Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (12): 2234-2242    DOI: 10.3785/j.issn.1008-973X.2021.12.002
土木工程、交通工程     
泥水盾构开挖面前泥浆渗透距离预测算法
尹鑫晟1(),朱彦华2,魏纲1,2,*(),丁智1,崔允亮1
1. 浙大城市学院 工程学院,浙江 杭州 310015
2. 浙江大学 建筑工程学院,浙江 杭州 310058
Algorithm for predicting slurry penetration distance in front of slurry shield tunnel face
Xin-sheng YIN1(),Yan-hua ZHU2,Gang WEI1,2,*(),Zhi DING1,Yun-liang CUI1
1. College of Engineering, Zhejiang University City College, Hangzhou 310015, China
2. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1386 KB)   HTML
摘要:

为了计算泥水盾构开挖面前泥浆渗透地层的距离,基于泥浆渗透不伴生泥膜的假设,提出改进模型来分析不同泥浆的渗透距离. 结果表明:在泥浆渗透时间小于20 s的情况下,与Xu模型相比,改进模型的最大精度提高6%,且无须泥浆渗透试验. 在不考虑泥膜的情况下,纯膨润土泥浆的最大渗透距离为5.8~6.3 m;添加高分子材料的膨润土泥浆最大渗透距离为0.3~1.6 m,是纯膨润土泥浆的5%~25%;羧甲基纤维素钠对泥浆的改性效果最好. 微透水泥膜的形成时间为3.2~5.0 s. 考虑泥浆渗透伴生泥膜的情况,得到改进模型的修正系数为0.72~0.92. 预测常用的泥浆渗透距离,当盾构刀盘切削周期为10 s时,泥浆渗透距离为2.3~6.3 cm,最大的渗透距离是一般盾构直径(6 m)的1.05%.

关键词: 泥水盾构泥浆配方渗透试验泥膜    
Abstract:

An improved model was proposed based on the existing slurry penetration calculation model, and the penetration distances of different slurry were analyzed, in order to calculate the distance of slurry penetration into the stratum before slurry shield tunnel face. Results showed that the maximum precision of the improved model was 6%, higher than that of Xu model when the infiltration time was less than 20 s, and no infiltration column tests are required. Without considering the filter cake, the maximum penetration distance of the pure bentonite slurry was 5.8-6.3 m. The maximum penetration distance of bentonite slurry with the polymer materials was 0.3-1.6 m, which was 5-25% of pure bentonite slurry. Sodium carboxymethyl cellulose has the best modification effect on slurry. The formation time of low-permeable filter cake was 3.2-5.0 s. The correction factor for the improved model was 0.72-0.92, which is obtained with consideration of the filter cake. Predicting the penetration distance of commonly used slurry, the penetration distance at 10 s of the shield cutter passing cycle was 2.3-6.3 cm, and the maximum penetration distance was 1.05% of the general shield diameter (6 m).

Key words: slurry shield    slurry formula    infiltration column test    filter cake
收稿日期: 2021-03-09 出版日期: 2021-12-31
CLC:  U 455.43  
基金资助: 国家自然科学基金资助项目(51808493);浙江省自然科学基金资助项目(LY21E080004,LHZ20E080001);杭州市科委农业与社会发展一般项目(20201203B125);浙江省公益技术研究计划项目(LGF20E080007);杭州市农业与社会发展一般科研项目(2020ZDSJ0639)
通讯作者: 魏纲     E-mail: yinxs@zucc.edu.cn;weig@zucc.edu.cn
作者简介: 尹鑫晟(1989—),男,讲师,博士,从事盾构隧道研究. orcid.org/0000-0001-9888-9415. E-mail: yinxs@zucc.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
尹鑫晟
朱彦华
魏纲
丁智
崔允亮

引用本文:

尹鑫晟,朱彦华,魏纲,丁智,崔允亮. 泥水盾构开挖面前泥浆渗透距离预测算法[J]. 浙江大学学报(工学版), 2021, 55(12): 2234-2242.

Xin-sheng YIN,Yan-hua ZHU,Gang WEI,Zhi DING,Yun-liang CUI. Algorithm for predicting slurry penetration distance in front of slurry shield tunnel face. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2234-2242.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.12.002        https://www.zjujournals.com/eng/CN/Y2021/V55/I12/2234

图 1  泥浆在地层渗透形成泥膜
图 2  泥浆渗透距离求解流程图
泥浆型号 ${\tau _{\rm{y}}}{\rm{/Pa}}$ $ L{\rm{/m}}$ ${k_{\rm{b}}}{\rm{/(1} }{ {\rm{0} }^{ {\rm{ - 5} } } }{\rm{ m} } \cdot { {\rm{s} }^{ - 1} }{\rm{)} }$ ${k'_{\rm{b}}}{\rm{/(1} }{ {\rm{0} }^{ {\rm{ - 5} } } }{\rm{ m} } \cdot { {\rm{s} }^{ - 1} }{\rm{)} }$
Con_40 0.50 1.563 $ {\text{8}}{\text{.0}} $ $ {\text{7}}{\text{.5}} $
Con_50 0.87 1.042 $ {\text{5}}{\text{.0}} $ $ {\text{4}}{\text{.5}} $
Con_60 2.00 0.434 $ {\rm{4}}{\rm{.0}}$ $ {\rm{4}}{\rm{.0}}$
表 1  渗透柱试验参数
图 3  模型计算的渗透距离和理论最大渗透距离的对比
图 4  泥膜试样
图 5  刀盘切削土体示意图
图 6  模型计算的渗透距离与实测渗透距离对比
泥浆型号 ρB/(g·L?1 材料 Mr C/% μ / (mPa·s) μ r /s μ m /s ρ/ (g·cm?3 τy/Pa L/m $k'_{\rm{b}} $/(m·s?1
SL_1 50 ? ? 0 1.50 16 30 1.030 0.15 6.356 $1.33 \times {10^{ - 4}}$
SL_2 70 ? ? 0 1.90 17 31 1.035 0.16 5.958 $1.05 \times {10^{ - 4}}$
SL_3 50 APAM 2.5×107 1 33.65 253 472 1.030 9.94 0.157 $1.36 \times {10^{ - 5}}$
SL_4 50 CPAM 1.6×107 1 5.80 19 38 1.030 0.10 9.533 $3.45 \times {10^{ - 5}}$
SL_5 50 PAA-Na 1.2×103 1 3.40 19 34 1.030 0.51 1.869 $5.88 \times {10^{ - 5}}$
SL_6 50 PAA-Na 1.5×104 1 6.05 22 40 1.030 1.28 0.745 $3.31 \times {10^{ - 5}}$
SL_7 50 CMC 4.1×104 1 9.15 23 41 1.030 2.20 0.433 $2.19 \times {10^{ - 5}}$
SL_8 50 CMC 5.7×104 1 63.35 264 291 1.030 32.04 0.030 $3.16 \times {10^{ - 6}}$
SL_9 50 CMC-Na 8.0×103 1 19.40 31 51 1.030 2.96 0.322 $1.03 \times {10^{ - 5}}$
表 2  泥浆基本参数
图 7  泥浆颗粒和地层颗粒级配曲线
图 8  泥浆压力20 kPa时,不同泥浆的渗透距离随时间的变化曲线
图 9  泥浆压力为20 kPa渗透时间为10 s时,改进模型与Krause-Broere模型的对比
图 10  实测泥浆渗透距离与理论最大渗透距离对比
图 11  改进模型与实测渗透距离的比值随时间的变化曲线
图 12  泥浆压力为20 kPa,渗透时间为10 s时,修正的泥浆渗透距离
1 朱伟, 钱勇进, 闵凡路, 等 中国泥水盾构使用现状及若干问题[J]. 隧道建设, 2019, 39 (5): 724- 735
ZHU Wei, QIAN Yong-jin, MIN Fan-lu, et al The current status and some problems of slurry shield in China[J]. Tunnel Construction, 2019, 39 (5): 724- 735
2 刘学彦, 王复明, 袁大军, 等 泥水盾构支护压力设定范围及其影响因素分析[J]. 岩土工程学报, 2019, 41 (5): 908- 917
LIU Xue-yan, WANG Fu-ming, YUAN Da-jun, et al Range of support pressures for slurry shield and analysis of its influence factors[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (5): 908- 917
3 ZHANG Z X, YIN T, HUANG X, et al Slurry filtration process and filter cake formation during shield tunnelling: insight from coupled CFD-DEM simulations of slurry filtration column test[J]. Tunnelling and Underground Space Technology, 2019, 87: 64- 77
doi: 10.1016/j.tust.2019.02.001
4 唐晓武, 李姣阳, 邹金杰, 等 浅埋盾构隧道开挖面失稳发展过程模型试验[J]. 浙江大学学报: 工学版, 2017, 51 (5): 863- 869
TANG Xiao-wu, LI Jiao-yang, ZOU Jin-jie, et al Model test of evolution of face instability in shallow shield tunnel[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (5): 863- 869
5 刘晶晶, 陈铁林, 姚茂宏, 等 砂层盾构隧道泥水劈裂试验与数值研究[J]. 浙江大学学报: 工学版, 2020, 54 (9): 1715- 1726
LIU Jing-jing, CHEN Tie-lin, YAO Mao-hong, et al Experimental and numerical study on slurry fracturing of shield tunnels in sandy stratum[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (9): 1715- 1726
6 BEZUIJEN A, STEENEKEN S P, RUIGROK J A T. Monitoring and analysing pressures around a TBM [C]// Proceeding of the 13th International Conference Underground Construction. Prague: [s. n. ], 2016: 1-9.
7 张忠苗, 林存刚, 吴世明, 等 泥水盾构施工引起的地面固结沉降实例研究[J]. 浙江大学学报: 工学版, 2012, 46 (3): 431- 440
ZHANG Zhong-miao, LIN Cun-gang, WU Shi-ming, et al Case study of ground surface consolidation settlements induced by slurry shield tunneling[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (3): 431- 440
doi: 10.3785/j.issn.1008-973X.2012.03.008
8 TALMON A M, MASTHERGEN D R, HUISMAN M Invasion of pressurized clay suspensions into granular soil[J]. Journal of Porous Media, 2013, 16 (4): 351- 365
doi: 10.1615/JPorMedia.v16.i4.70
9 曹利强, 张顶立, 房倩, 等 泥水盾构泥浆在砂土地层中的渗透特性及对地层强度的影响[J]. 北京交通大学学报, 2016, 40 (6): 7- 13
CAO Li-qiang, ZHANG Ding-li, FANG Qian, et al Seepage characteristics of slurry and its influence on ground strength of slurry shield in sand[J]. Journal of Beijing Jiaotong University, 2016, 40 (6): 7- 13
doi: 10.11860/j.issn.1673-0291.2016.06.002
10 MIN F L, ZHU W, HAN X R Filter cake formation for slurry shield tunnelling in highly permeable sand[J]. Tunnelling and Underground Space Technology, 2013, 38: 423- 430
doi: 10.1016/j.tust.2013.07.024
11 刘成, 汤昕怡, 高玉峰 砂性地层孔隙特征对泥水盾构泥浆成膜的影响[J]. 岩土工程学报, 2017, 39 (11): 2002- 2008
LIU Cheng, TANG Xin-yi, GAO Yu-feng Influence of pore characteristics of sand strata on filter-cake formation under slurry shield[J]. Chinese Journal of Geotechnical Engineering, 2017, 39 (11): 2002- 2008
doi: 10.11779/CJGE201711007
12 吴迪, 周顺华, 温馨 砂性土层泥水盾构泥浆成膜性能试验[J]. 岩石力学与工程学报, 2015, 34 (Suppl.1): 3460- 3467
WU Di, ZHOU Shun-hua, WEN Xin Laboratory test and application of filter cake formation in sand during slurry shield construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34 (Suppl.1): 3460- 3467
13 叶伟涛, 王靖禹, 付龙龙, 等 福州中粗砂地层泥水盾构泥浆成膜特性试验研究[J]. 岩石力学与工程学报, 2018, 37 (5): 1260- 1269
YE Wei-tao, WANG Jing-yu, FU Long-long, et al Laboratory test and characteristic of filter film formation of slurry shield in medium-coarse sand stratum in Fuzhou[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (5): 1260- 1269
14 魏代伟, 朱伟, 闵凡路 砂土地层泥水盾构泥膜形成时间及泥浆压力转化率的试验研究[J]. 岩土力学, 2014, 35 (2): 423- 428
WEI Dai-wei, ZHU Wei, MIN Fan-lu Experimental study of forming time of filter cake and conversion rate of slurry pressure in slurry shield in sand stratum[J]. Rock and Soil Mechanics, 2014, 35 (2): 423- 428
15 魏纲, 朱彦华, 尹鑫晟 泥水盾构泥浆渗透试验及成膜规律研究进展[J]. 低温建筑技术, 2021, 43 (3): 76- 81
WEI Gang, ZHU Yan-hua, YIN Xin-sheng Research progress of slurry penetration test and filter cake forming law of slurry shield[J]. Low Temperature Architecture Technology, 2021, 43 (3): 76- 81
16 韩晓瑞, 朱伟, 刘泉维, 等 泥浆性质对泥水盾构开挖面泥膜形成质量影响[J]. 岩土力学, 2008, 29 (Suppl.1): 288- 292
HAN Xiao-rui, ZHU Wei, LIU Quan-wei, et al Influence of slurry property on filter cake quality on working face of slurry shield[J]. Rock and Soil Mechanics, 2008, 29 (Suppl.1): 288- 292
17 YIN X S, CHEN R P, LI Y C, et al A column system for modeling bentonite slurry infiltration in sands[J]. Journal of Zhejiang University-Science A: Applied Physics and Engineering, 2016, 17 (10): 818- 827
doi: 10.1631/jzus.A1500290
18 KRAUSE T. Schildvortrieb mit flussigkeits-und erdgestuzter ortsbrust [D]. Braunschweig: University Braunschweig, 1987. KRAUSE T. Shield tunneling with liquid and earth-borne face [D]. Braunschweig: University Braunschweig, 1987.
19 BROERE W. Tunnel face stability and new CPT applications [D]. Delft: Delft University of Technology, 2001.
20 XU T, BEZUIJEN A Experimental study on the mechanisms of bentonite slurry penetration in front of a slurry TBM[J]. Tunnelling and Underground Space Technology, 2019, 93: 103052
doi: 10.1016/j.tust.2019.103052
21 YE F, YANG T, MAO J H, et al Half-spherical surface diffusion model of shield tunnel back-fill grouting based on infiltration effect[J]. Tunnelling and Underground Space Technology, 2019, 83: 274- 281
doi: 10.1016/j.tust.2018.10.004
22 房凯. 桩端后注浆过程中浆土相互作用及其对桩基性状影响研究 [D]. 杭州: 浙江大学, 2013: 34.
FANG Kai. Grout-soil interaction during base grouting and its effects on the behavior of grouted piles [D]. Hangzhou: Zhejiang University, 2013: 34.
23 YIN X S, CHEN R P, MENG F Y, et al Face stability of slurry-driven shield with permeable filter cake[J]. Tunnelling and Underground Space Technology, 2021, 111: 103841
doi: 10.1016/j.tust.2021.103841
24 毛家骅, 袁大军, 杨将晓, 等 砂土地层泥水盾构开挖面孔隙变化特征理论研究[J]. 岩土力学, 2020, 41 (7): 1- 10
MAO Jia-hua, YUAN Da-jun, YANG Jiang-xiao, et al Theoretical study of porosity characteristic on excavation face of slurry shield in sand stratum[J]. Rock and Soil Mechanics, 2020, 41 (7): 1- 10
25 施虎, 杨华勇, 龚国芳, 等 盾构掘进机关键技术及模拟试验台现状与展望[J]. 浙江大学学报:工学版, 2013, 47 (5): 741- 749
SHI Hu, YANG Hua-yong, GONG Guo-fang, et al Key technologies of shield tunneling machine and present status and prospect of test rigs for tunneling simulation[J]. Journal of Zhejiang University: Engineering Science, 2013, 47 (5): 741- 749
doi: 10.3785/j.issn.1008-973X.2013.05.001
26 刘海宁, 张亚峰, 刘汉东, 等 砂土地层中泥水盾构掌子面主动破坏模式试验研究[J]. 岩石力学与工程学报, 2019, 38 (3): 572- 581
LIU Hai-ning, ZHANG Ya-feng, LIU Han-dong, et al Experimental study on active failure modes of slurry shield-driven tunnel faces in sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (3): 572- 581
27 李昀, 张子新, 张冠军 泥水平衡盾构开挖面稳定模型试验研究[J]. 岩土工程学报, 2007, 29 (7): 1074- 1079
LI Yun, ZHANG Zi-xin, ZHANG Guan-jun Laboratory study on face stability mechanism of slurry shields[J]. Chinese Journal of Geotechnical Engineering, 2007, 29 (7): 1074- 1079
doi: 10.3321/j.issn:1000-4548.2007.07.018
28 袁大军, 李兴高, 李建华, 等 北京地下直径线泥水盾构泥浆特性参数确定[J]. 建筑技术, 2009, 40 (3): 279- 282
YUAN Da-jun, LI Xing-gao, LI Jian-hua, et al Determination of mud and water characteristic parameters of slurry shield of Beijing underground straight rail transit line[J]. Architecture Technology, 2009, 40 (3): 279- 282
doi: 10.3969/j.issn.1000-4726.2009.03.025
[1] 刘晶晶,陈铁林,姚茂宏,魏钰昕,周子健. 砂层盾构隧道泥水劈裂试验与数值研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1715-1726.
[2] 贾连辉,李太运. 超大直径盾构管片拼装机关键技术[J]. 浙江大学学报(工学版), 2020, 54(4): 816-823.
[3] 张忠苗 ,林存刚,吴世明,邹健,刘俊伟. 泥水盾构施工引起的地面固结沉降实例研究[J]. J4, 2012, 46(3): 431-440.