Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (12): 2225-2233    DOI: 10.3785/j.issn.1008-973X.2021.12.001
土木工程、交通工程     
断层破裂过程对减隔震桥梁地震反应的影响
谢旭(),黄文彤,冀龙飞,王天佳
浙江大学 建筑工程学院, 浙江 杭州 310058
Influence of fault rupture process on seismic responses of seismic isolation bridges
Xu XIE(),Wen-tong HUANG,Long-fei JI,Tian-jia WANG
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1649 KB)   HTML
摘要:

为了研究断层破裂过程对减隔震桥梁地震反应的影响,提出利用相位特性模拟方向性效应的改进随机格林函数法. 以1994年美国北岭地震的断层条件为例,通过与实际地震记录对比验证模拟方法的有效性;应用改进的随机格林函数法模拟相同震中距离的4组地震动时程作为输入条件,比较断层破裂过程对相同震中距离、不同方位的减隔震桥梁地震反应影响. 结果表明,利用持时包络曲线与相位差分分布的相似性可以方便模拟随机格林函数的地震动加速度时程;在相同震中距离条件下,断层破裂方向的观测点地震动以及对应位置的桥梁结构地震反应明显大于非破裂方向位置的观测点;当破裂方向上地震动时程不具有脉冲特性时,断层周围的减隔震桥梁地震反应主要受地震动强度的影响,桥梁方位的影响不明显.

关键词: 随机格林函数法断层破裂过程方向性效应减隔震桥梁相位特性    
Abstract:

An improved stochastic Green’s function method that using phase characteristics to simulate the directivity effect was proposed, in order to research the influence of the fault rupture process on the seismic response of seismic isolation bridges. Taking the fault conditions of the 1994 Northridge earthquake in the United States as an example, the effectiveness of the simulation method was verified by comparison with the actual seismic records. The improved stochastic Green's function method was used to simulate four groups of acceleration time histories with the same epicentral distance as the input conditions, and the effects of fault rupture process on the seismic response of seismic isolation bridges with the same epicentral distance and different directions were compared. Results show that the similarity between the duration envelope curve and the phase difference distribution can be used to simulate the acceleration time history of stochastic Green’s function conveniently. Under the same epicentral distance, the ground motion at the observation point in the fault rupture direction and the seismic response of the bridge structure at the corresponding position are significantly greater than those at the observation point in the non rupture direction. When the acceleration time history of ground motion in the rupture direction does not have pulse characteristics, the seismic response of seismic isolation bridges around the fault is mainly affected by the intensity of ground motion, and the influence of bridge orientation is not obvious.

Key words: stochastic Green’s function method    fault rupture process    directional effect    seismic isolation bridge    phase characteristics
收稿日期: 2021-01-05 出版日期: 2021-12-31
CLC:  U 448  
基金资助: 国家自然科学基金资助项目(51878606)
作者简介: 谢旭(1963—),男,教授,博士,从事桥梁抗震方面的研究. orcid.org/0000-0002-4247-0487. E-mail: xiexu@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
谢旭
黄文彤
冀龙飞
王天佳

引用本文:

谢旭,黄文彤,冀龙飞,王天佳. 断层破裂过程对减隔震桥梁地震反应的影响[J]. 浙江大学学报(工学版), 2021, 55(12): 2225-2233.

Xu XIE,Wen-tong HUANG,Long-fei JI,Tian-jia WANG. Influence of fault rupture process on seismic responses of seismic isolation bridges. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2225-2233.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.12.001        https://www.zjujournals.com/eng/CN/Y2021/V55/I12/2225

图 1  子断层破裂产生的地震动持时模型
图 2  子断层小震的相位差分谱以及累积概率密度
图 3  随机格林函数模拟地震动模拟过程
图 4  北岭地震的断层位置及台站位置
图 5  北岭地震中3个台站加速度时程和反应谱模拟结果与实际记录的对比验证
台站 实测/模拟 PGV/(cm·s?1) PGA/(cm·s?2) PGV/PGA/s
LV3 实测H1方向 8.43 82.53 0.10
LV3 实测H2方向 8.02 103.76 0.08
LV3 模拟 8.03 85.04 0.09
LV1 实测H1方向 7.81 87.14 0.09
LV1 实测H2方向 7.05 71.80 0.10
LV1 模拟 10.91 104.49 0.10
表 1  站台LV3、LV1的PGV/PGA
图 6  桥梁立面布置图
图 7  桥梁地震反应计算模型
图 8  观测点位置以及地震动加速度时程和反应谱模拟结果
图 9  P4墩顶位移地震反应及P5墩E型钢滞回曲线
图 10  调整后的El Centro地震动时程
${\rm{PGA} }$ $ 地震动 $ $|d^{{\rm{P4}}}_{{\rm{max}}}|$ $\eta ^{\rm{P5}}$
0.15g El Centro 27.6 3.5
0.15g 15-2 21.7 2.5
0.15g 30-4 24.0 2.8
0.30g El Centro 35.5 5.3
0.30g 15-3 26.2 3.8
0.30g 30-1 25.6 3.5
0.60g El Centro 40.3 8.5
0.60g 15-1 43.9 10.2
表 2  不同地震动输入下墩顶地震位移及E型钢阻尼器最大塑性率对比
1 廖文义, 罗俊雄, 万绚. 隔震桥梁承受近断层地震之反应分析[J]. 地震工程与工程振动, 2001, 21(4): 102-108.
LIAO Wen-yi, LUO Jun-xiong, WAN Xuan. Responses of isolated bridges subjected to near-fault ground motions [J], Earthquake Engineering and Engineering Vibration, 2001, 21(4): 102-108.
2 JONSSON M H, BESSASON B, HAFLIDASON E Earthquake response of a base-isolated bridge subjected to strong near-fault ground motion[J]. Soil Dynamics and Earthquake Engineering, 2010, 30 (6): 447- 455
doi: 10.1016/j.soildyn.2010.01.001
3 李小军, 贺秋梅, 亓兴军 地震动速度脉冲对大跨斜拉桥减震控制的影响[J]. 应用基础与工程科学学报, 2012, 20 (2): 272- 285
LI Xiao-jun, HE Qiu-mei, QI Xing-jun Seismic mitigation control effects of long-span cable-stayed bridges to ground motions with velocity pulse[J]. Journal of Basic Science and Engineering, 2012, 20 (2): 272- 285
doi: 10.3969/j.issn.1005-0930.2012.02.011
4 魏红一, 逯宗典, 王志强 近场简支梁铅芯橡胶支座隔震特性分析[J]. 同济大学学报:自然科学版, 2010, 38 (1): 39- 44
WEI Hong-yi, LU Zong-dian, WANG Zhi-qiang Isolation characteristic analysis of simple supported bridge to near fault ground motions[J]. Journal of Tongji University: Natural Science, 2010, 38 (1): 39- 44
5 ZHONG J, JIANG L W, PANG Y T, et al Near-fault seismic risk assessment of simply supported bridges[J]. Earthquake Spectra, 2020, 36 (4): 1645- 1669
doi: 10.1177/8755293020935145
6 CHWN X, LI J Z, GUAN Z G Fragility analysis of tall pier bridges subjected to near-fault pulse-like ground motions[J]. Structure and Infrastructure Engineering, 2020, 16 (8): 1082- 1095
doi: 10.1080/15732479.2019.1683589
7 HARTZELL S H Earthquake aftershocks as Green’s functions[J]. Geophys Research Letters, 1978, 5 (1): 1- 4
doi: 10.1029/GL005i001p00001
8 BOORE D M Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra[J]. Bulletin of the Seismological Society of America, 1983, 73 (6): 1865- 1894
9 陶夏新, 王国新 近场强地震动模拟中对破裂的方向性效应和上盘效应的表达[J]. 地震学报, 2003, 25 (2): 191- 198
TAO Xia-xin, WANG Guo-xin Rupture directivity and hanging wall effect in near field strong ground motion simulation[J]. Acta Seismologica Sinica, 2003, 25 (2): 191- 198
doi: 10.3321/j.issn:0253-3782.2003.02.009
10 王国新, 史家平 近场强地震动合成方法研究及地震动模拟[J]. 东北地震研究, 2008, 24 (2): 4- 10
WANG Guo-xin, SHI Jia-ping Study and simulation on near-site strong ground motions[J]. Seismological Research of Northeast China, 2008, 24 (2): 4- 10
doi: 10.3969/j.issn.1674-8565.2008.02.002
11 王海云, 谢礼立 近断层强地震动场预测[J]. 地球物理学报, 2009, 52 (3): 703- 711
WANG Hai-yun, XIE Li-li Prediction of near-fault strong ground motion field[J]. Chinese Journal of Geophysics, 2009, 52 (3): 703- 711
12 孙吉泽, 俞言祥, 何金刚, 等 2013年乌鲁木齐MS5.6和MS5.1地震强地震动模拟研究 [J]. 地震学报, 2017, 39 (5): 751- 763
SUN Ji-ze, YU Yan-xiang, HE Jin-gang, et al Ground motion simulation of 2013 Ürümqi MS5.6 and MS5.1 earthquakes [J]. Acta Seismologica Sinica, 2017, 39 (5): 751- 763
doi: 10.11939/jass.2017.05.010
13 李启成, 何书耕, 闵也, 等 用随机有限断层方法模拟 2016-11-13新西兰 MW7.8地震 [J]. 大地测量与地球动力学, 2019, 39 (12): 1237- 1242
LI Qi-cheng, HE Shu-geng, MIN Ye, el al Simulation of Amberley New Zealand November 13, 2016 MW7.8 earthquake using stochastic finite fault method [J]. Journal of Geodesy and Geodynamics, 2019, 39 (12): 1237- 1242
14 香川敬生 ハイブリッド合成法に用いる統計的グリーン関数法の長周期帯域への拡張[J]. 日本地震工学会論文集, 2004, 4 (2): 21- 32
KAGAWA Takao Developing a stochastic Green ’s function method having more accuracy in long period range to be used in the hybrid method[J]. Journal of Japan Association for Earthquake Engineering, 2004, 4 (2): 21- 32
doi: 10.5610/jaee.4.2_21
15 入倉孝次郎, 香川敬生, 関口春子. 経験的グリーン関数を用いた強震動予測方法の改良 [C]// 日本地震学会講演予稿集. Tokyo: 日本地震学会, 1997(2): B25.
IRIKURA Kojiro, KAGAWA Takao, SEKIGUCHI Haruko. Revision of the empirical Green ’s function method [C]// Program and abstracts of the Seismological Society of Japan. Tokyo: Seismological Society of Japan, 1997(2): B25.
16 佐藤智美 近地項と中間項を考慮した三成分統計的グリーン関数生成手法の高度化[J]. 日本建築学会構造系論文集, 2009, 74 (638): 629- 638
SATOH Toshimi Improvement of generation method of three components of statistical Green's functions considering near-field and intermediate-field terms[J]. Journal of Structural and Construction Engineering, 2009, 74 (638): 629- 638
doi: 10.3130/aijs.74.629
17 佐藤智美, 川瀬博, 佐藤俊明 ボアホール観測記録を用いた表層地盤同定手法による工学的基盤波の推定及びその統計的経時特性[J]. 日本建築学会構造系論文集, 1994, 59 (461): 19- 28
SATOH Toshimi, KAWASE Hiroshi, SATO Toshiaki Engineering bedrock waves obtained through the identification analysis based on borehole records and their statistical envelope characteristics[J]. Journal of Structural and Construction Engineering, 1994, 59 (461): 19- 28
doi: 10.3130/aijs.59.19_3
18 大崎順彦. 新地震動のスペクトル解析入門[M]. 東京: 鹿島出版会, 1994: 66-79.
19 HARTZELL S H, LEEDS A, FRANKEL A, et al Site response for urban Los Angeles using aftershocks of the Northridge earthquake[J]. Bulletin of the Seismological Society of America, 1996, 86 (1B): S168- S192
20 野津厚. 統計的グリーン関数に近地項と中間項を導入するための簡便な方法 [C]// 第 12回日本地震工学シンポジウム. Tokyo: JEES, 2006: 190-193.
NOZU Atsushi. A simple scheme to introduce near-field and intermediate-field terms in stochastic Green’s functions [C]// Proceedings of the 12nd Japan Earthquake Engineering Symposium. Tokyo: JEES, 2006: 190-193.
21 WALD D J, HEATON T H, HUDNUT K W The slip history of the 1994 Northridge, California, earthquake determined from strong-motion, teleseismic, GPS, and leveling data[J]. Bulletin of the Seismological Society of America, 1996, 86 (1B): S49- S70
doi: 10.1785/BSSA08601B0S49
22 PEER. PEER strong ground motion databases [DB/OL]. [2020-12-29]. https://peer.berkeley.edu/peer-strong-ground-motion-databases.
23 谢旭, 王炎, 陈列 轨道约束对铁路减隔震桥梁地震响应的影响[J]. 铁道学报, 2012, 34 (6): 75- 82
XIE Xu, WANG Yan, CHEN Lie Effect of rail restraints on seismic response of cushioning railway bridges[J]. Journal of the China Railway Society, 2012, 34 (6): 75- 82
doi: 10.3969/j.issn.1001-8360.2012.06.014
[1] 王彤,王炎,谢旭,张鹤. 不等高桥墩铁路减隔震桥梁钢阻尼支座地震易损性[J]. 浙江大学学报(工学版), 2014, 48(11): 1909-1916.