Please wait a minute...
Journal of Zhejiang University (Science Edition)  2023, Vol. 50 Issue (6): 711-721    DOI: 10.3785/j.issn.1008-9497.2023.06.006
CCF CAD/CG 2023     
Highly efficient fluid-solid coupled incompressible SPH simulation method for atherosclerotic plaque generation
Fei WANG1,Weihong LI1,Yu YANG2,Dazhi JIANG1,Baoquan ZHAO3(),Xiaonan LUO4
1.Department of Computer Science,Shantou University,Shantou 515063,Guangdong Province,China
2.Shenzhen Securities Information Co. ,Ltd. ,Shenzhen 518000,Guangdong Province,China
3.School of Artificial Intelligence,Sun Yat-Sen Universit,Zhuhai 519000,Guangdong Province,China
4.School of Computer Science and Information Security,Guilin University of Electronic Technology,Guilin 541004,Guangxi Zhuang Autonomous Region,China
Download: HTML( 1 )   PDF(4046KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Atherosclerosis is a critical cause of cardiovascular disease and stroke. Simulating and visualizing this process is crucial to relevant medical research. To tackle the problems of existing methods regarding the difficulties on realistic simulation and low efficiency, we propose a novel and highly efficient atherosclerotic plaque simulation solution based on a fluid-solid coupled incompressible smoothed particle hydrodynamics (SPH) method. Firstly, we discretize the blood into incompressible fluid particles using fluid-solid coupled in compressible SPH to control the stability of blood. Then, we adopt the plaque generation model to model blood, monocytes and other particles to control plaque generation based on pathological analysis of blood composition. Finally, we compute the physical properties of blood and plaque by coupling fluid-solid particles to simulate the plaque clogging effect. To make the simulation as in real-time as possible, parallel accelerated computation is implemented in CUDA architecture. Several realistic renderings of plaque simulations are provided.The results show that our method can achieves fast simulation of plaque generation in blood while avoiding the high computational cost associated with the partial differential equation model for plaque generation.



Key wordssmoothed particle hydrodynamics (SPH)      atherosclerosis simulation      plaque generation      blood simulation      fluid-solid coupled     
Received: 12 June 2023      Published: 30 November 2023
CLC:  TP 391  
Corresponding Authors: Baoquan ZHAO     E-mail: zhaobaoquan@mail.sysu.edu.cn
Cite this article:

Fei WANG,Weihong LI,Yu YANG,Dazhi JIANG,Baoquan ZHAO,Xiaonan LUO. Highly efficient fluid-solid coupled incompressible SPH simulation method for atherosclerotic plaque generation. Journal of Zhejiang University (Science Edition), 2023, 50(6): 711-721.

URL:

https://www.zjujournals.com/sci/EN/Y2023/V50/I6/711


动脉粥样硬化斑块生成的高效流固耦合不可压缩SPH模拟方法

动脉粥样硬化是导致心血管疾病和中风的关键诱因,对该病变过程进行模拟与可视化有助于开展医学研究。为解决现有模拟方法不能可视化动脉粥样硬化斑块生成过程以及模拟速度过慢问题,提出了一种基于高效流固耦合不可压缩光滑粒子流体动力学(smoothed particle hydrodynamics,SPH)的斑块生成模拟方法。首先,基于流固耦合不可压缩SPH方法,将血液离散为不可压缩流体粒子,以控制血液流动的稳定性;然后,使用斑块生成模型对血液、单核细胞等粒子建模,对血液成分进行病理性分析,控制斑块生成;最后,通过流固耦合作用计算血液与斑块的物理特性,模拟斑块堵塞血流过程。为使模拟结果能够实时呈现,用统一计算设备架构(compute unified device architecture,CUDA)实现并行加速计算。方法实现了对血液中斑块生成的快速模拟,避免了用偏微分方程模型模拟带来的高计算量;同时能较真实地模拟斑块生成过程并体现血液与斑块的流固耦合作用;最后逼真展现了斑块模拟的渲染结果。


关键词: 光滑粒子流体动力学,  动脉粥样硬化,  斑块生成模拟,  血液模拟,  流固耦合 
Fig.1 Transition of monocytes to macrophages in atherosclerosis26
Fig.2 Thrombin stimulates ICAM-1 expression
Fig.3 Attractive force analysis of monocyte recruitment in atherosclerosis
Fig.4 Conversion processing of particles
参数取值单位描述
h0.025m光滑核半径
ρ1 050.0kg·m-3血液密度
m0.000 2kg血液粒子质量
V010-16m3斑块形成临界体积
Vm10-17m3单核细胞体积
VM10-14m3巨噬细胞体积
VF10-13m3泡沫细胞体积
P0120mmHg血管初始血压
E024.5kPa内皮层初始杨氏模量
α3.5N·m-3流体粒子黏性常数
σ2N·m-3流固粒子黏滞系数
Table 1 Experimental parameters of atherosclerotic plaque formation
Fig.5 Effects of blood simulation
Fig.6 Visualization of plaque growth processes
Fig.7 Rendering of the generated plaque
Fig.8 Effect of different V0 on the rate of plaque formation
Fig.9 Plaque generation in planar blood flow
Fig.10 Blood flow rate and blood flow changes from frame 3 000 to frame 15 000
实验粒子数FPS/(帧·s-1
CPUCUDA
平直血管26 7162.2199.9
弯曲血管20 1282.9227.7
平面血流16 4963.5260.9
Table 2 Simulation efficiency
测试条件粒子数斑块FPS/(帧·s-1
CPUCUDA
TC122 0842.9216.7
TC226 7162.2200.7
TC326 716×2.2202.6
TC431 3481.7196.5
Table 3 Simulation efficiency of four groups of test conditions
[1]   SONG P, FANG Z, WANG H, et al. Global and regional prevalence, burden, and risk factors for carotid atherosclerosis: A systematic review, meta-analysis, and modelling study[J]. The Lancet Global Health, 2020, 8(5): e721-e729. DOI:10.1016/s2214-109x(20)30117-0
doi: 10.1016/s2214-109x(20)30117-0
[2]   KE G, HANS C, AGARWAL G, et al. Mathematical model of atherosclerotic aneurysm[J]. Mathematical Biosciences and Engineering, 2021, 18(2): 1465-1484. DOI:10.3934/mbe.2021076
doi: 10.3934/mbe.2021076
[3]   ZOHDI T I, HOLZAPFEL G A, BERGER S A. A phenomenological model for atherosclerotic plaque growth and rupture[J]. Journal of Theoretical Biology, 2004, 227(3): 437-43. DOI:10.1016/j.jtbi.2003.11.025
doi: 10.1016/j.jtbi.2003.11.025
[4]   TANG D, YANG C, ZHENG J, et al. 3D MRI-based multicomponent FSI models for atherosclerotic plaques[J]. Annals of Biomedical Engineering, 2004, 32(7): 947-960. DOI:10.1023/b:abme.0000032457.10191.e0
doi: 10.1023/b:abme.0000032457.10191.e0
[5]   MONAGHAN J J. Smoothed particle hydrodynamics[J]. Reports on Progress in Physics, 2005, 68(8): 1703-1759. DOI:10.1088/0034-4885/68/8/R01
doi: 10.1088/0034-4885/68/8/R01
[6]   MÜLLER M, SCHIRM S, TESCHNER M. Interactive blood simulation for virtual surgery based on smoothed particle hydrodynamics[J]. Technology and Health Care, 2004, 12(1): 25-31. DOI:10.3233/thc-2004-12103
doi: 10.3233/thc-2004-12103
[7]   AL-SAAD M, SUAREZ C A, OBEIDAT A, et al. Application of smooth particle hydrodynamics method for modelling blood flow with thrombus formation[J]. Computer Modeling in Engineering & Sciences, 2020, 122(3): 831-862. DOI:10.32604/cmes.2020. 08527
doi: 10.32604/cmes.2020. 08527
[8]   陈旭游, 王若梅, 林淑金, 等. 基于Gillespie方法的血栓生成模拟方法[J]. 计算机辅助设计与图形学学报, 2019, 31(8):1301-1311. DOI:10.3724/SP.J.1089.2019.17570
CHEN X Y, WANG R M, LIN S J, et al. Thrombus clotting simulation method based on the Gillespie method[J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(8): 1301-1311. DOI:10.3724/SP.J.1089.2019.17570
doi: 10.3724/SP.J.1089.2019.17570
[9]   WANG F, XU S, JIANG D, et al. Particle hydrodynamic simulation of thrombus formation using velocity decay factor[J]. Computer Methods and Programs in Biomedicine, 2021, 207: 106173. DOI:10.1016/j.cmpb.2021.106173
doi: 10.1016/j.cmpb.2021.106173
[10]   WANG F, LIN S, LUO X, et al. Coupling computation of density-invariant and divergence-free for improving incompressible SPH efficiency[J]. IEEE Access, 2020, 8: 135912-135919. DOI:10.1109/access.2018.2872420
doi: 10.1109/access.2018.2872420
[11]   MÜLLER M, CHARYPAR D, GROSS M. Particle-based fluid simulation for interactive applications[C]// Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Aire-la-Ville: Eurographics Association Press, 2003: 154-159.
[12]   MACKLIN M, MÜLLER M. Position based fluids[J]. ACM Transactions on Graphics, 2013, 32(4): 1-12. DOI:10.1145/2461912.2461984
doi: 10.1145/2461912.2461984
[13]   BECKER M, TESCHNER M. Weakly compressible SPH for free surface flows[C]// Proceedings of the ACM SIGGRAPH/ Eurographics Symposium on Computer Animation. Aire-la-Ville: Eurographics Association Press, 2007: 209-217.
[14]   SOLENTHALER B, PAJAROLA R. Predictive-corrective incompressible SPH[J]. ACM Transactions on Graphics, 2009, 28(3): 40. DOI:10.1145/1531326.1531346
doi: 10.1145/1531326.1531346
[15]   IHMSEN M, CORNELIS J, SOLENTHALER B, et al. Implicit incompressible SPH[J]. IEEE Transactions Visualization and Computer Graphics, 2014, 20(3): 426-435. DOI:10.1109/tvcg.2013.105
doi: 10.1109/tvcg.2013.105
[16]   BENDER J, KOSCHIER D. Divergence-free SPH for incompressible and viscous fluids[J]. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(3): 1193-1206. DOI:10.1109/tvcg.2016.2578335
doi: 10.1109/tvcg.2016.2578335
[17]   陈国栋, 党琪琪, 叶东文. 基于SPH及形状约束的血流实时仿真[J]. 中国医疗设备, 2015, 30(6): 23-27. doi:10.3969/j.issn.1674-1633.2015.06.005
CHEN G D, DANG Q Q, YE D W. Real-time simulation of blood flow based on SPH and shape constrain[J]. China Medical Devices, 2015, 30(6): 23-27. doi:10.3969/j.issn.1674-1633.2015.06.005
doi: 10.3969/j.issn.1674-1633.2015.06.005
[18]   MUKHERJEE D, GUIN L N, CHAKRAVARTY S. A reaction-diffusion mathematical model on mild atherosclerosis[J]. Modeling Earth Systems and Environment, 2019, 5: 1853-1865. DOI:10.1007/s40808-019-00643-6
doi: 10.1007/s40808-019-00643-6
[19]   KHATIB N E, GÉNIEYS S, VOLPERT V. Atherosclerosis initiation modeled as an inflammatory process[J]. Mathematical Modelling of Natural Phenomena, 2007, 2(2): 126-141. DOI:10.1051/mmnp:2008022
doi: 10.1051/mmnp:2008022
[20]   NAVIER C. Mémoire sur les lois du mouvement des fluides[J]. Mémoires de l'Académie Royale des Sciences de l'Institut de France, 1823, 6: 389-440.
[21]   PELISSIER M A, VAN DE COEVERING N. Classics of Elastic Wave Theory[M]. Tulsa: Society of Exploration Geophysicists, 2007. DOI:10.1190/1.9781560801931.ch3e
doi: 10.1190/1.9781560801931.ch3e
[22]   LAGRANGE J L. Mécanique Analytique[M]. Paris: Mallet-Bachelier, 1853.
[23]   KAPLANSKI G, MARIN V, FABRIGOULE M, et al. Thrombin-activated human endothelial cells support monocyte adhesion in vitro following expression of intercellular adhesion molecule-1 (ICAM-1; CD54) and vascular cell adhesion molecule-1 (VCAM-1; CD106)[J]. Blood, 1998, 92(4): 1259-1267. DOI:10.1182/blood.v92.4.1259
doi: 10.1182/blood.v92.4.1259
[24]   WATANABE T, FAN J L. Atherosclerosis and inflammation mononuclear cell recruitment and adhesion molecules with reference to the implication of ICAM-1/LFA-1 pathway in atherogenesis[J]. International Journal of Cardiology, 1998, 66(): 45-53. DOI:10.1016/s0167-5273(98)00147-8
doi: 10.1016/s0167-5273(98)00147-8
[25]   TABAS I A, LICHTMAN A H. Monocyte-macrophages and T cells in atherosclerosis[J]. Immunity, 2017, 47(4): 621-634. DOI:10.1016/j.immuni.2017.09.008
BOBRYSHEV Y V. Monocyte recruitment and foam cell formation in atherosclerosis[J]. Micron, 2006, 37(3): 208-222. DOI:10.1016/j.micron.2005.10.007
doi: 10.1016/j.micron.2005.10.007
[26]   KALZ J, CATE H T, SPRONK H M. Thrombin generation and atherosclerosis[J]. Journal of Thrombosis and Thrombolysis, 2013, 37: 45-55. DOI:10.1007/s11239-013-1026-5
doi: 10.1007/s11239-013-1026-5
[27]   BOBRYSHEV Y V. Monocyte recruitment and foam cell formation in atherosclerosis[J]. Micron, 2006, 37(3): 208-222. DOI:10.1016/j.micron.2005.10.007
doi: 10.1016/j.micron.2005.10.007
[28]   BANERJEE M K, GANGULY R, DATTA A. Variation of wall shear stress and flow characteristics across cosine shaped stenotic model with flow reynolds number and degree of stenosis[J]. International Journal of Fluid Mechanics Research, 2010, 37(6): 530-552. DOI:10.1615/InterJFluidMechRes.v37.i6.30
doi: 10.1615/InterJFluidMechRes.v37.i6.30
[29]   ISLAM M H, JOHNSTON P R. A mathematical model for atherosclerotic plaque formation and arterial wall remodelling[J]. Anziam Journal, 2016, 57: 320-345. DOI:10.21914/anziamj.v57i0.10386
doi: 10.21914/anziamj.v57i0.10386
[30]   REZVANI-SHARIF A, TAFAZZOLI-SHADPOUR M, AVOLIO A. Progressive changes of elastic moduli of arterial wall and atherosclerotic plaque components during plaque development in human coronary arteries[J]. Medical & Biological Engineering & Computing, 2018, 57(3): 731-740. DOI:10.1007/s11517-018-1910-4
doi: 10.1007/s11517-018-1910-4
[31]   AKINCI N, IHMSEN M, AKINCI G, et al. Versatile rigid-fluid coupling for incompressible SPH[J]. ACM Transactions on Graphics (TOG), 2012, 31(4): 1-8. DOI:10.1145/2185520.2185558
doi: 10.1145/2185520.2185558
[32]   GERRITY R G. The role of the monocyte in atherogenesis: I. Transition of blood-borne monocytes into foam cells in fatty lesions[J]. American Journal of Pathology, 1981, 103(2): 181-190.
[1] Zechu ZHANG,Weilong PENG,Keke TANG,Zhaoyang YU,Asad Khan,Meie FANG. Reconstructing tooth meshes by pyramid diffeomorphic deformation from CBCT images[J]. Journal of Zhejiang University (Science Edition), 2023, 50(6): 701-710.
[2] Hanyang MAO,Chen PENG,Chen LI,Changbo WANG. Neural marching cubes for open surfaces[J]. Journal of Zhejiang University (Science Edition), 2023, 50(6): 692-700.
[3] Kehua SU,Bailüe LIU,Na LEI,Kehan LI,Xianfeng GU. Focus+Context visualization based on optimal mass transportation[J]. Journal of Zhejiang University (Science Edition), 2023, 50(6): 681-691.
[4] Shengjun LIU,Zi TENG,Haibo WANG,Xinru LIU. Two-dimensional shape intrinsic symmetry detection algorithm based on functional map[J]. Journal of Zhejiang University (Science Edition), 2023, 50(6): 668-680.
[5] Zerun LIU,Yufei YIN,Wenhao XUE,Rui GUO,Lechao CHENG. A review of conditional image generation based on diffusion models[J]. Journal of Zhejiang University (Science Edition), 2023, 50(6): 651-667.
[6] Xiaodong TAN,Qi ZHAO,Mingzhu WEN,Xiaochao WANG. A hybrid image watermarking algorithm based on BEMD,DCT and SVD[J]. Journal of Zhejiang University (Science Edition), 2023, 50(4): 442-454.
[7] Yuhua FANG,Feng YE. MFDC-Net: A breast cancer pathological image classification algorithm incorporating multi-scale feature fusion and attention mechanism[J]. Journal of Zhejiang University (Science Edition), 2023, 50(4): 455-464.
[8] Xiang KONG,Jun CHEN. A class of triangular surface of the same degree with four shape parameters[J]. Journal of Zhejiang University (Science Edition), 2023, 50(2): 153-159.
[9] Yuanpeng ZHANG, Hongtao CHEN, Weina WANG. Nonconvex nonsmooth variational model for Poisson noise removal of gray image[J]. Journal of Zhejiang University (Science Edition), 2023, 50(2): 160-166.
[10] Juncheng LI,Chengzhi LIU,Zhijun LUO,Zhiwen LONG. Bi-objective energy minimization of spatial parametric curves and its applications[J]. Journal of Zhejiang University (Science Edition), 2023, 50(1): 63-68.
[11] Haorong QUAN,Chengzhi LIU,Juncheng LI,Lian YANG,Lijuan HU. Preconditioned progressive iterative approximation for tensor product Said-Ball patches[J]. Journal of Zhejiang University (Science Edition), 2022, 49(6): 682-690.
[12] Ruiqi YU,Yuhua LIU,Xilong SHEN,Ruyu ZHAI,Xiang ZHANG,Zhiguang ZHOU. Representation learning driven multiple graph sampling[J]. Journal of Zhejiang University (Science Edition), 2022, 49(3): 271-279.
[13] Ruimin LYU,Taojie ZHANG,Xu XI,Mengmeng WANG,Lei MENG,Kejun ZHANG. Quantify influence of brushwork and structure on the aesthetic quality of regular script Chinese characters[J]. Journal of Zhejiang University (Science Edition), 2022, 49(3): 261-270.
[14] Ying ZHONG,Song WANG,Hao WU,Zepeng CHENG,Xuejun LI. SEMMA-Based visual exploration of cyber security event[J]. Journal of Zhejiang University (Science Edition), 2022, 49(2): 131-140.
[15] Jintai ZHU, Jihua YE, Feng GUO, Lu JIANG, Aiwen JIANG. FSAGN:An expression recognition method based on independent selection of video key frames[J]. Journal of Zhejiang University (Science Edition), 2022, 49(2): 141-150.