Please wait a minute...
Journal of Zhejiang University (Science Edition)  2023, Vol. 50 Issue (6): 668-680    DOI: 10.3785/j.issn.1008-9497.2023.06.002
CCF CAD/CG 2023     
Two-dimensional shape intrinsic symmetry detection algorithm based on functional map
Shengjun LIU1,2(),Zi TENG1,Haibo WANG1(),Xinru LIU1
1.School of Mathematics and Statistics,Central South University,Changsha 410083,China
2.Institute of Engineering Modeling and Scientific Computing,Central South University,Changsha 410083,China
Download: HTML( 4 )   PDF(4078KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

To address the problem that the performance of existing methods is unsatisfactory for detecting intrinsic symmetry in two-dimensional shapes, based on the flexible function mapping framework, we propose a spectral optimization method, named FM-2DSISD, to compute dense point maps for two-dimensional intrinsic symmetric shapes. Firstly, we design an algorithm robust to noise to extract sparse feature symmetry point maps. Secondly, using the feature symmetric point maps and the functional map framework, a mathematical model is developed whose optimization objective is to maintain the diagonality and orthogonality of each principal submatrix of the functional map matrix. We prove that the defined optimization objective can preserve the isometry of intrinsic symmetry maps. To solve the formula, we give an alternating iterative algorithm between the spatial and spectral domains via the spectral up-sampling technique. Numerical experiments show that the proposed algorithm performs better than the state-of-the-art methods on two-dimensional smooth shapes and noisy shapes.



Key wordstwo-dimensional shape      intrinsic symmetry      spectral method      functional map     
Received: 12 June 2023      Published: 30 November 2023
CLC:  TP 391.41  
Corresponding Authors: Haibo WANG     E-mail: shjliu.cg@csu.edu.cn;wanghaibo2022@csu.edu.cn
Cite this article:

Shengjun LIU,Zi TENG,Haibo WANG,Xinru LIU. Two-dimensional shape intrinsic symmetry detection algorithm based on functional map. Journal of Zhejiang University (Science Edition), 2023, 50(6): 668-680.

URL:

https://www.zjujournals.com/sci/EN/Y2023/V50/I6/668


基于函数映射的二维形状内蕴对称检测算法

针对现有的二维形状内蕴对称检测方法表现欠佳的问题,提出了基于函数映射的二维形状内蕴对称稠密点对应谱优化(FM-2DSISD)方法。首先,设计了对噪声数据鲁棒的稀疏特征对称点对提取算法。其次,利用特征对称点对和函数映射框架,建立了以保持函数映射矩阵每个主子矩阵对角正交性为优化目标的数学模型,证明了该优化目标能保持内蕴对称映射的等距性。借助谱上采样技术,通过频谱域和空间域交替迭代优化函数映射矩阵和逐点映射矩阵。数值实验表明,FM-2DSISD方法对二维光滑形状和噪声形状的检测效果均优于现有检测方法。


关键词: 二维形状,  内蕴对称,  谱方法,  函数映射 
Fig.1 Pipeline of detecting intrinsic symmetry in two-dimensional shapes method
Fig.2 Schematic diagram of the principle of extracting contour feature points from two-dimensional shapes
Fig.3 Incorrect feature point matching obtained on two-dimensional shapes by the method in reference [31
Fig.4 Intuitive explanation of condition (1)
Fig.5 Example of feature point matching in a two-dimensional shape
Fig.6 Experimental results for two-dimensional intrinsic symmetry detection
Fig.7 Visualization of symmetric axes in two-dimensional smooth axisymmetric shapes obtained by different methods
Fig.8 Visualization of intrinsic symmetry axes in two-dimensional smooth axisymmetric shapes obtained by different methods
方法轴对称图形ΔθΔd
SCCCrab1.484 50.9874
Bat0.170 42.476 7
R-DetectorCrab00.484 6
Bat00.349 7
LIP-DetectorCrab00.484 6
Bat00.349 7
FM-2DSISDCrab0.069 10.007 4
Bat0.003 40.043 1
Table 1 Comparison of Δθ and Δd on different smooth axisymmetric shapes using different methods
内蕴对称图形FABCICPZoomOutMWPFM-2DSISD
平均值0.072 70.053 30.052 60.055 20.008 4
Beetle0.043 30.043 20.060 20.037 70.011 8
Butterfly0.013 00.009 00.009 50.009 30.004 2
Fly0.157 30.130 50.117 60.174 50.003 9
Human0.070 30.023 20.029 20.030 40.017 5
Octopus0.079 60.060 40.046 30.024 30.004 4
Table 2 Comparison of average geodesic error on different smooth intrinsic symmetric shapes using different methods
Fig.9 Visualization of symmetric axes in two-dimensional noisy-axisymmetric shapes obtained by different methods
Fig.10 Visualization of intrinsic symmetry detection results on two-dimensional noisy shapes with different methods
方法轴对称图形ΔθΔd
SCCCrab0.491 60.330 6
Bat0.846 81.271 0
R-DetectorCrab00.515 6
Bat00.349 7
LIP-DetectorCrab00.515 6
Bat00.349 7
FM-2DSISDCrab0.119 60.089 2
Bat0.033 60.016 8
Table 3 Comparison of Δθ and Δd on different noisy axisymmetric shapes using different methods
内蕴对称图形方法
FABCICPZoomOutMWPFM-2DSISD
Beetle(noise)0.043 20.052 50.045 60.040 90.013 6
Butterfly(noise)0.014 50.013 40.013 30.012 40.009 3
Fly(noise)0.106 00.085 10.129 50.103 90.003 7
Human(noise)0.040 70.019 80.061 20.048 20.020 0
Octopus(noise)0.103 20.078 50.047 30.103 80.006 3
平均值0.061 50.049 90.059 40.061 80.010 6
Table 4 Comparison of average geodesic error on different noisy intrinsic symmetric shapes using different methods
三角面片数/个平均测地误差
1 8233.864×10-3
2 5003.737×10-3
3 0003.715×10-3
3 5003.708×10-3
4 0003.684×10-3
Table 5 Average geodesic error for shapes with different densities and uniformity levels
 
(a)1 823个三角面片(b)2 500个三角面片(c)3 000个三角面片(d)3 500个三角面片(e)4 000个三角面片
Fig.11 Visualization of triangulation for shapes with different densities and uniformity levels using Triangle35
方法SCCR-DetectorLIP-DetectorFM-2DSISD

平均运行

时间/s

1.650.070.1034.73
Table 6 Average running time of different methods on axisymmetric shapes
方法FAZoomOutMWPBCICPFM-2DSISD
平均运行时间/s0.030.210.61114.7541.41
Table 7 Average running time of different methods on intrinsic symmetric shapes
Fig.12 Human body shapes and algorithm results for individuals with significantly different arm lengths
[1]   MEHAFFY M, SALINGAROS N. Symmetry in architecture: Toward an overdue reassessment[J]. Symmetry: Culture and Science,2021,32: 311-343. DOI:10.26830/symmetry_2021_3_311
doi: 10.26830/symmetry_2021_3_311
[2]   GAO L, ZHANG L X, MENG H Y,et al. PRS-Net: Planar reflective symmetry detection net for 3D models[J]. IEEE Transactions on Visualization and Computer Graphics,2020,27(6): 3007-3018. DOI:10.1109/tvcg.2020.3003823
doi: 10.1109/tvcg.2020.3003823
[3]   LIN H T, LIU Z C, CHEANG C,et al. SAR-Net: Shape alignment and recovery network for category-level 6D object pose and size estimation[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans: IEEE,2022: 6697-6707. DOI:10.1109/cvpr52688.2022. 00659
doi: 10.1109/cvpr52688.2022. 00659
[4]   DONATI N, CORMAN E, OVSJANIKOV M. Deep orientation-aware functional maps: Tackling symmetry issues in shape matching[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans: IEEE, 2022: 732-741. DOI:10.1109/cvpr52688.2022.00082
doi: 10.1109/cvpr52688.2022.00082
[5]   NAGAR R, RAMAN S. 3Dsymm: Robust and accurate 3D reflection symmetry detection[J]. Pattern Recognition,2020,107: 107483. DOI:10.1016/j.patcog.2020.107483
doi: 10.1016/j.patcog.2020.107483
[6]   HUANG J, STOTER J,NAN L. Symmetrization of 2D polygonal shapes using mixed-integer programming[J]. Computer-Aided Design,2023, 163: 103572. DOI:10. 1016/j.cad.2023.103572
doi: 10. 1016/j.cad.2023.103572
[7]   MITRA N J, GUIBAS L J, PAULY M. Symmetrization[J]. ACM Transactions on Graphics,2007,26(3): 63-70. DOI:10.1145/1276377.1276456
doi: 10.1145/1276377.1276456
[8]   WU H, CHEN X, LI P,et al. Automatic symmetry detection from brain MRI based on a 2-channel convolutional neural network[J]. IEEE Transactions on Cybernetics,2019,51(9): 4464-4475. DOI:10. 1109/tcyb.2019.2952937
doi: 10. 1109/tcyb.2019.2952937
[9]   HUANG T, DONG B, LIN J,et al. Symmetry-aware transformer-based mirror detection[C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2023,37(1): 935-943. DOI:10.1609/aaai.v37i1.25173
doi: 10.1609/aaai.v37i1.25173
[10]   NAGAR R, RAMAN S. Reflection symmetry detection by embedding symmetry in a graph[C]// 2019 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP). Brighton: IEEE,2019: 2147-2151. DOI:10.1109/icassp.2019.8682412
doi: 10.1109/icassp.2019.8682412
[11]   GNUTTI A, GUERRINI F, LEONARDI R. Combining appearance and gradient information for image symmetry detection[J]. IEEE Transactions on Image Processing,2021,30: 5708-5723. DOI:10. 1109/tip.2021.3085202
doi: 10. 1109/tip.2021.3085202
[12]   LEI M, HONG W, ZHAO Z,et al. 3D printing of auxetic metamaterials with digitally reprogrammable shape[J]. ACS Applied Materials & Interfaces,2019,11(25): 22768-22776. DOI:10.1021/acsami. 9b06081
doi: 10.1021/acsami. 9b06081
[13]   NIU C J, LI J, XU K. Im2struct: Recovering 3D shape structure from a single RBG image[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE,2018: 4521-4529. DOI:10.1109/cvpr.2018.00475
doi: 10.1109/cvpr.2018.00475
[14]   LEE S, LIU Y. Skewed rotation symmetry group detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,32(9): 1659-1672. DOI:10.1109/tpami.2009.173
doi: 10.1109/tpami.2009.173
[15]   LEE S, COLLINS R T, LIU Y. Rotation symmetry group detection via frequency analysis of frieze-expansions[C]// 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage: IEEE,2008: 1-8. DOI:10.1109/cvpr. 2008.4587831
doi: 10.1109/cvpr. 2008.4587831
[16]   NGUYEN T P, NGUYEN T T. Robust detectors of rotationally symmetric shapes based on novel semi-shape signatures[J]. Pattern Recognition,2023,138: 109336. DOI:10.1016/j.patcog.2023.109336
doi: 10.1016/j.patcog.2023.109336
[17]   AGUILAR W, ALVARADO-GONZALEZ M, GARDUNO E,et al. Detection of rotational symmetry in curves represented by the slope chain code[J]. Pattern Recognition,2020,107: 107421. DOI:10.1016/j.patcog.2020.107421
doi: 10.1016/j.patcog.2020.107421
[18]   BRIBIESCA E. A geometric structure for two-dimensional shapes and three-dimensional surfaces[J]. Pattern Recognition,1992,25(5): 483-496. DOI:10.1016/0031-3203(92)90047-m
doi: 10.1016/0031-3203(92)90047-m
[19]   BRIBIESCA E. A measure of tortuosity based on chain coding[J]. Pattern Recognition,2013,46(3): 716-724. DOI:10.1016/j.patcog.2012.09.017
doi: 10.1016/j.patcog.2012.09.017
[20]   ALVARADO-GONZALEZ M, AGUILAR W, GARDUÑO E,et al. Mirror symmetry detection in curves represented by means of the slope chain code[J]. Pattern Recognition,2019,87: 67-79. DOI:10.1016/j.patcog.2018.10.002
doi: 10.1016/j.patcog.2018.10.002
[21]   NGUYEN T P, TRUONG H P, NGUYEN T T,et al. Reflection symmetry detection of shapes based on shape signatures[J]. Pattern Recognition,2022,128: 108667. DOI:10.1016/j.patcog.2022.108667
doi: 10.1016/j.patcog.2022.108667
[22]   NGUYEN T P, NGUYEN X S. Shape measurement using LIP-signature[J]. Computer Vision and Image Understanding,2018,171: 83-94. DOI:10.1016/j.cviu.2018.05.003
doi: 10.1016/j.cviu.2018.05.003
[23]   TABBONE S, WENDLING L, SALMON J P. A new shape descriptor defined on the Radon transform[J]. Computer Vision and Image Understanding,2006,102(1): 42-51. DOI:10.1016/j.cviu.2005.06.005
doi: 10.1016/j.cviu.2005.06.005
[24]   OVSJANIKOV M, SUN J, GUIBAS L. Global intrinsic symmetries of shapes[J]. Computer Graphics Forum,2008,27(5): 1341-1348. DOI:10. 1111/j.1467-8659.2008.01273.x
doi: 10. 1111/j.1467-8659.2008.01273.x
[25]   RUSTAMOV R M. Laplace-Beltrami eigenfunctions for deformation invariant shape representation[C]// Proceedings of the fifth Eurographics Symposium on Geometry Processing. Barcelona:Eurographics Association,2007,257: 225-233.
[26]   XU K, ZHANG H, TAGLIASACCHI A,et al. Partial intrinsic reflectional symmetry of 3D shapes[J]. ACM Transactions on Graphics,2009: 1-10. DOI:10.1145/1661412.1618484
doi: 10.1145/1661412.1618484
[27]   XU K, ZHANG H, JIANG W,et al. Multi-scale partial intrinsic symmetry detection[J]. ACM Transactions on Graphics,2012,31(6): 1-11. DOI:10.1145/2366145.2366200
doi: 10.1145/2366145.2366200
[28]   KIM V G, LIPMAN Y, CHEN X,et al. Möbius transformations for global intrinsic symmetry analysis[J]. Computer Graphics Forum,2010,29(5): 1689-1700. DOI:10.1111/j.1467-8659.2010.01778.x
doi: 10.1111/j.1467-8659.2010.01778.x
[29]   OVSJANIKOV M, BEN-CHEN M, SOLOMON J,et al. Functional maps: A flexible representation of maps between shapes[J]. ACM Transactions on Graphics,2012,31(4): No.30. DOI:10.1145/2185520.2185526
doi: 10.1145/2185520.2185526
[30]   WANG H, HUANG H, Group representation of global intrinsic symmetries[J]. Computer Graphics Forum,2017,36(7): 51-61. DOI:10.1111/cgf.13271
doi: 10.1111/cgf.13271
[31]   NAGAR R, RAMAN S. Fast and accurate intrinsic symmetry detection[C]// 15th European Conference on Computer Vision. Munich: Springer,2018: 433-450. DOI:10. 1007/978-3-030-01246-5_26
doi: 10. 1007/978-3-030-01246-5_26
[32]   QIAO Y L, GAO L, LIU S Z,et al. Learning-based real-time detection of intrinsic reflectional symmetry[J]. IEEE Transactions on Visualization and Computer Graphics,2023,29(9): 3799-3808. DOI:10.1109/tvcg.2022.3172361
doi: 10.1109/tvcg.2022.3172361
[33]   REN J, POULENARD A, WONKA P,et al. Continuous and orientation-preserving correspondences via functional maps[J]. ACM Transactions on Graphics,2018,37(6): 1-16. DOI:10.1145/3272127.3275040
doi: 10.1145/3272127.3275040
[34]   MELZI S, REN J, RODOLA E,et al. ZoomOut: Spectral upsampling for efficient shape correspondence[J]. ACM Transactions on Graphics,2019,38(6): 1-14. DOI:10.1145/3355089.3356524
doi: 10.1145/3355089.3356524
[35]   SHEWCHUK J R. Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator[C]// Applied Computational Geometry: Towards Geometric Engineering. Berlin: Springer,1996: 203-222. DOI:10. 1007/BFb0014497
doi: 10. 1007/BFb0014497
[36]   MEYER M, DESBRUN M, SCHRÖDER P,et al. Discrete differential-geometry operators for triangulated 2-manifolds[C]// Visualization and Mathematics III. Berlin: Springer,2003: 35-57. DOI:10.1007/978-3-662-05105-4_2
doi: 10.1007/978-3-662-05105-4_2
[37]   SARFRAZ M, MASOOD A, ASIM M R. A new approach to corner detection[C]// International Conference on Computer Vision and Graphics. Netherlands: Springer,2006: 528-533. DOI:10.1007/1-4020-4179-9_75
doi: 10.1007/1-4020-4179-9_75
[38]   SUN J, OVSJANIKOV M, GUIBAS L. A concise and provably informative multi‐scale signature based on heat diffusion[J]. Computer Graphics Forum,2009,28(5): 1383-1392. DOI:10.1111/j.1467-8659. 2009.01515.x
doi: 10.1111/j.1467-8659. 2009.01515.x
[39]   LATECKI L J, LAKAMPER R, ECKHARDT T. Shape descriptors for non-rigid shapes with a single closed contour[C]// 2000 IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head: IEEE,2000: 424-429. DOI:10.1109/cvpr.2000. 855850
doi: 10.1109/cvpr.2000. 855850
[40]   ZENG W, GUO R, LUO F,et al. Discrete heat kernel determines discrete Riemannian metric[J]. Graphical Models,2012,74(4): 121-129. DOI:10.1016/j.gmod.2012.03.009
doi: 10.1016/j.gmod.2012.03.009
[41]   EZUZ D, BEN-CHEN M. Deblurring and denoising of maps between shapes[J]. Computer Graphics Forum, 2017,36(5): 165-174. DOI:10.1111/cgf. 13254
doi: 10.1111/cgf. 13254
[42]   REN J, MELZI S, WONKA P,et al. Discrete optimization for shape matching[J]. Computer Graphics Forum, 2021,40(5): 81-96. DOI:10.1111/cgf.14359
doi: 10.1111/cgf.14359
[43]   SEBASTIAN T B, KLEIN P N, KIMIA B B., Recognition of shapes by editing their shock graphs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(5): 550-571. DOI:10.1109/tpami.2004.1273924
doi: 10.1109/tpami.2004.1273924
[1] Ye XingdeJiang Jinsheng. A New Pseudospectral Approximationfor. the Biharmonic Boundary Value Problem[J]. Journal of Zhejiang University (Science Edition), 1995, 22(1): 13-21.