Please wait a minute...
Journal of Zhejiang University (Science Edition)  2023, Vol. 50 Issue (1): 63-68    DOI: 10.3785/j.issn.1008-9497.2023.01.010
Mathematics and Computer Science     
Bi-objective energy minimization of spatial parametric curves and its applications
Juncheng LI(),Chengzhi LIU,Zhijun LUO,Zhiwen LONG
College of Mathematics and Finance,Hunan University of Humanities,Science and Technology,Loudi 417000,Hunan Province,China
Download: HTML( 5 )   PDF(1607KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Although approach of energy minimizations has been widely applied in the construction of planar curves, it is seldom used in the construction of spatial curves. In this paper, we first introduce the bending energy and twisting energy of spatial parametric curves. A method of constructing spatial parametric curves aiming at minimizing the bending energy and twisting energy simultaneously is then proposed. Finally, the applications of the proposed method in the construction, extension, and smoothing of the cubic Bézier curve are discussed. The proposed method conforms with the fact that both bending and twisting are important shape features of spatial parametric curves.



Key wordsspatial parametric curve      energy minimization      bending energy      twisting energy      bi-objective optimization      Bézier curve     
Received: 10 September 2021      Published: 13 January 2023
CLC:  TP 391.72  
Cite this article:

Juncheng LI,Chengzhi LIU,Zhijun LUO,Zhiwen LONG. Bi-objective energy minimization of spatial parametric curves and its applications. Journal of Zhejiang University (Science Edition), 2023, 50(1): 63-68.

URL:

https://www.zjujournals.com/sci/EN/Y2023/V50/I1/63


空间参数曲线的双目标能量极小化方法及其应用

能量极小化方法已广泛用于平面曲线的构造,而在空间曲线构造方面的应用尚少。首先介绍了空间参数曲线的弯曲能和扭曲能,然后提出了一种以弯曲能和扭曲能同时极小为目标的空间参数曲线构造方法,最后以空间三次Bézier曲线为例,探讨了该方法在曲线的构造、延拓、平滑等问题中的应用。所提出的方法更符合空间参数曲线既需考虑弯曲又需考虑扭曲的特点。


关键词: 空间参数曲线,  能量极小化,  弯曲能,  扭曲能,  双目标优化,  Bézier曲线 
Fig.1 Spatial cubic Bézier curves constructed by three energy minimizations
能量极小化方法弯曲能扭曲能
弯曲能极小51.000 0171.000 0
扭曲能极小76.000 00
双目标能量极小75.534 90.025 4
Table 1 Bending energy and twist energy obtained by three energy minimizations
Fig. 2 Extension of the spatial cubic Bézier curve
Fig.3 Smoothing of linked spatial curves
[1]   VASSILEV T I. Fair interpolation and approximation of B-splines by energy minimization and points insertion[J]. Computer-Aided Design, 1996, 28(9): 753-760. DOI:10.1016/0010-4485(95)00087-9
doi: 10.1016/0010-4485(95)00087-9
[2]   XU G, ZHU Y F, DENG L S, et al. Efficient construction of B-spline curves with minimal internal energy[J]. Computers, Materials & Continua, 2019, 58(3): 879-892. DOI:10.32604/cmc.2019.03752
doi: 10.32604/cmc.2019.03752
[3]   XU G, WANG G Z, CHEN W Y. Geometric construction of energy-minimizing Bézier curves[J]. SCIENCE CHINA Information Sciences, 2011, 54(7): 1395-1406. DOI:10.1007/s11432-011-4294-8
doi: 10.1007/s11432-011-4294-8
[4]   AHN Y J, HOFFMANN C, ROSEN P. Geometric constraints on quadratic Bézier curves using minimal length and energy[J]. Journal of Computational and Applied Mathematics, 2014, 255: 887-897. DOI:10. 5555/2753878.2754090
doi: 10. 5555/2753878.2754090
[5]   ERİŞKİN H, YÜCESAN A. Bézier curve with a minimal Jerk energy[J]. Mathematical Sciences and Applications E-Notes, 2016, 4(2): 139-148. DOI:10.36753/MATHENOT.421467
doi: 10.36753/MATHENOT.421467
[6]   ZHANG C M, ZHANG P F, CHENG F H. Fairing spline curves and surfaces by minimizing energy[J]. Computer-Aided Design, 2001, 33(13): 913-923. DOI:10.1016/S0010-4485(00)00114-7
doi: 10.1016/S0010-4485(00)00114-7
[7]   YONG J H, CHENG F H. Geometric Hermite curves with minimum strain energy[J]. Computer Aided Geometric Design, 2004, 21(3): 281-301. DOI:10.1016/j.cagd.2003.08.003
doi: 10.1016/j.cagd.2003.08.003
[8]   LI J C, LIU C Z, ZHANG L. Shape-preserving planar quadratic Bézier interpolation spline with minimal stretch energy[J]. Journal of Testing and Evaluation, 2020, 48(3): 2432-2440. DOI:10.1520/JTE20190809
doi: 10.1520/JTE20190809
[9]   李军成, 刘成志, 赵文才. 优化端点条件的平面二次均匀B样条插值曲线[J]. 浙江大学学报(理学版), 2021, 48(2): 159-166. DOI:10.3785/j.issn.1008-9497.2021.02.004
LI J C, LIU C Z, ZHAO W C. Planar quadratic uniform B-spline interpolation curve with optimized endpoint condition[J]. Journal of Zhejiang University (Science Edition), 2021, 48(2): 159-166. DOI:10.3785/j.issn.1008-9497.2021.02.004
doi: 10.3785/j.issn.1008-9497.2021.02.004
[10]   JAKLIČ G, ŽAGAR E. Planar cubic G 1 interpolatory splines with small strain energy[J]. Journal of Computational and Applied Mathematics, 2011, 235(8): 2758-2765. DOI:10.1016/j.cam.2010.11.025
doi: 10.1016/j.cam.2010.11.025
[11]   JAKLIČ G, ŽAGAR E. Curvature variation minimizing cubic Hermite interpolants[J]. Applied Mathematics and Computation, 2011, 218(7): 3918-3924. DOI:10.1016/j.amc.2011.09.039
doi: 10.1016/j.amc.2011.09.039
[12]   LU L Z. Planar quintic G 2 Hermite interpolation with minimum strain energy[J]. Journal of Computational and Applied Mathematics, 2015, 274: 109-117. DOI:10.1016/j.cam.2014.07.015
doi: 10.1016/j.cam.2014.07.015
[13]   LU L Z. A note on curvature variation minimizing cubic Hermite interpolants[J]. Applied Mathematics and Computation, 2015, 259: 596-599. DOI:10. 1016/j.amc.2014.11.113
doi: 10. 1016/j.amc.2014.11.113
[14]   LU L Z, JIANG C K, HU Q Q. Planar cubic G 1 and quintic G 2 Hermite interpolations via curvature variation minimization[J]. Computers & Graphics, 2018, 70: 92-98. DOI:10.1016/j.cag.2017.07.007
doi: 10.1016/j.cag.2017.07.007
[15]   LI J C, ZHANG L. Length and curvature variation energy minimizing planar cubic G 1 Hermite interpolation curve[J]. Journal of Taibah University for Science, 2019, 14(1): 60-64. DOI:10.1080/16583655.2019.1703248
doi: 10.1080/16583655.2019.1703248
[16]   LI J C. Combined internal energy minimizing planar cubic Hermite curve[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2020, 14(7): 20-00308. DOI:10.1299/jamdsm.2020jamdsm0103
doi: 10.1299/jamdsm.2020jamdsm0103
[17]   BOCK K, STILLER J. Energy-minimizing curve fitting for high-order surfaces mesh generation[J]. Applied Mathematics, 2014, 5: 3318-3327. DOI:10.4236/am.2014.521309
doi: 10.4236/am.2014.521309
[18]   BOCK K, STILLER J. Optimizing triangular high-order surface meshes by energy-minimization[J]. Engineering with Computers, 2018, 34(4): 659-670. DOI:10.1007/s00366-017-0565-3
doi: 10.1007/s00366-017-0565-3
[19]   VELTKAMP R C, WESSELINK W. Modeling 3D curves of minimal energy[J]. Computer Graphics Forum, 1995, 14(3): 97-110. DOI:10.1111/j.1467-8659.1995.cgf143_0097.x
doi: 10.1111/j.1467-8659.1995.cgf143_0097.x
[20]   林锉云, 董加礼. 多目标优化的方法与理论[M]. 长春: 吉林教育出版社, 1992.
LIN C Y, DONG J L. The Methods and Theories of Multi-Objective Optimizations[M]. Changchun: Jilin Education Press, 1992.
[1] LI Juncheng, LIU Chengzhi, ZHAO Wencai. Planar quadratic uniform B-spline interpolation curve with optimized endpoint condition[J]. Journal of Zhejiang University (Science Edition), 2021, 48(2): 159-166.