Please wait a minute...
浙江大学学报(理学版)  2023, Vol. 50 Issue (6): 795-802    DOI: 10.3785/j.issn.1008-9497.2023.06.014
第15届全国几何设计与计算学术会议专题     
复杂外形约束下的多形态特征TPMS微通道设计方法
杨冠华1,吴蕾2,王清辉1(),池梓鹏1
1.华南理工大学 机械与汽车工程学院, 广东 广州 510641
2.工业和信息化部电子第五研究所, 广东 广州 511370
Multi-morphological design of TPMS-based microchannels with freeform boundary constraints
Guanhua YANG1,Lei WU2,Qinghui WANG1(),Zipeng CHI1
1.School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou 510640,China
2.The 5th Electronics Research Institute,Ministry of Industry and Information,Guangzhou 511370,China
 全文: PDF(5587 KB)   HTML( 0 )
摘要:

对复杂外形约束下的三周期极小曲面(triply periodic minimal surface,TPMS)微通道结构,提出一种基于共形映射的多形态特征设计方法。首先,将自由曲面边界映射至平面,在二维参数域上进行通道拓扑结构设计;然后,提出一种基于环的Beta生长算法,实现多种TPMS形态特征的平滑过渡;最后,将在二维参数域上设计的微通道结构逆映射至自由曲面约束下的三维空间,完成设计。实例分析表明,采用本文方法设计的微通道结构对复杂曲面边界具有较好的适应能力,能实现内部形态特征设计目标。

关键词: TPMS微通道结构多形态特征共形映射过渡区域    
Abstract:

A multi-morphology design method based on conformal mapping is proposed to design triply periodic minimal surface (TPMS) microchannels with freeform boundary constraints. This method first maps the boundary of a freeform surface to a plane, allowing for channel topology design in the 2D parametric domain; Then, a Beta growth function algorithm based on loop is proposed to achieve smooth transitions of various TPMS morphological features; Finally, by mapping the designed microchannels to the 3D space constrained by the free surface, the microchannels meet the design requirements. Our results show that the microchannels constructed by this method have good adaptability to complex surface boundaries and can achieve the design goals of internal morphological features.

Key words: TPMS-based microchannel structure    multi-morphology    conformal mapping    transition area
收稿日期: 2023-06-21 出版日期: 2023-11-30
CLC:  TP 391  
基金资助: 国家自然科学基金资助项目(52175225);广州市重点领域研发计划项目(202206070005)
通讯作者: 王清辉     E-mail: wqh@scut.edu.cn
作者简介: 杨冠华(2000—),ORCID:https://orcid.org/0009-0000-5404-1354,男,硕士研究生,主要从事功能结构设计与制造研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨冠华
吴蕾
王清辉
池梓鹏

引用本文:

杨冠华,吴蕾,王清辉,池梓鹏. 复杂外形约束下的多形态特征TPMS微通道设计方法[J]. 浙江大学学报(理学版), 2023, 50(6): 795-802.

Guanhua YANG,Lei WU,Qinghui WANG,Zipeng CHI. Multi-morphological design of TPMS-based microchannels with freeform boundary constraints. Journal of Zhejiang University (Science Edition), 2023, 50(6): 795-802.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2023.06.014        https://www.zjujournals.com/sci/CN/Y2023/V50/I6/795

图1  基于环的过渡区域生成示意
图2  过渡区域偏置距离求解流程及示意
图3  4种基本TPMS结构
图4  基于星型环的多形态特征TPMS结构
图5  共形TPMS微通道结构生成流程
图6  二维参数域与原曲面上的坐标点的对应关系
图7  自主设计的多形态TPMS结构
图8  与复杂曲面共形的多形态特征TPMS微通道结构
图9  燃气轮叶片的多形态特征TPMS微通道结构设计
1 WANG Y. Periodic surface modeling for computer aided nano design[J]. Computer-Aided Design, 2007, 39(3): 179-189. DOI:10.1016/j.cad.2006. 09.005
doi: 10.1016/j.cad.2006. 09.005
2 FENG J W, FU J Z, YAO X H, et al. Triply periodic minimal surface (TPMS) porous structures: From multi-scale design, precise additive manufacturing to multidisciplinary applications[J]. International Journal of Extreme Manufacturing, 2022, 4(2): 022001. DOI:10.1088/2631-7990/ac5be6
doi: 10.1088/2631-7990/ac5be6
3 LIU G, XIONG Y, ROSEN D W. Multidisciplinary design optimization in design for additive manufacturing[J]. Journal of Computational Design and Engineering, 2022, 9(1): 128-143. DOI:10.1093/jcde/qwab073
doi: 10.1093/jcde/qwab073
4 ADEGOKE K A, MAXAKATO N W. Porous metal oxide electrocatalytic nanomaterials for energy conversion: Oxygen defects and selection techniques[J]. Coordination Chemistry Reviews, 2022, 457: 214389. DOI:10.1016/j.ccr.2021.214389
doi: 10.1016/j.ccr.2021.214389
5 FAN Z H, GAO R J, LIU S T. Thermal conductivity enhancement and thermal saturation elimination designs of battery thermal management system for phase change materials based on triply periodic minimal surface[J]. Energy, 2022, 259: 125091. DOI:10.1016/j.energy.2022.125091
doi: 10.1016/j.energy.2022.125091
6 雷鸿源, 李静蓉, 徐志佳, 等. 孔隙表征参数驱动的TPMS多孔结构建模[J]. 计算机辅助设计与图形学学报, 2020, 32(1): 156-163. DOI:10.3724/SP.J.1089.2020.17893
LEI H Y, LI J R, XU Z J, et al. TPMS-based porous structures modelling driven by pore characteristic parameters[J]. Journal of Computer-Aided Design & Computer Graphics, 2020, 32(1): 156-163. DOI:10.3724/SP.J.1089.2020.17893
doi: 10.3724/SP.J.1089.2020.17893
7 LI D W, DAI N, TANG Y L, et al. Design and optimization of graded cellular structures with triply periodic level surface-based topological shapes[J]. Journal of Mechanical Design, 2019, 141(7): 071402. DOI:10.1115/1.4042617
doi: 10.1115/1.4042617
8 YANG N, QUAN Z, ZHANG D W, et al. Multi-morphology transition hybridization CAD design of minimal surface porous structures for use in tissue engineering[J]. Computer-Aided Design, 2014, 56: 11-21. DOI:10.1016/j.cad.2014.06.006
doi: 10.1016/j.cad.2014.06.006
9 YOO D J, KIM K H. An advanced multi-morphology porous scaffold design method using volumetric distance field and beta growth function[J]. International Journal of Precision Engineering and Manufacturing, 2015, 16(9): 12. DOI:10.1007/s12541-015-0263-2
doi: 10.1007/s12541-015-0263-2
10 GÜNTHER F, WAGNER M, PILZ S, et al. Design procedure for triply periodic minimal surface based biomimetic scaffolds[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 126: 104871. DOI:10.1016/j.jmbbm.2021. 104871
doi: 10.1016/j.jmbbm.2021. 104871
11 REN F, ZHANG C, LIAO W, et al. Transition boundaries and stiffness optimal design for multi-TPMS lattices[J]. Materials & Design, 2021, 210: 110062. DOI:10.1016/j.matdes.2021.110062
doi: 10.1016/j.matdes.2021.110062
12 YOO D J. Heterogeneous minimal surface porous scaffold design using the distance field and radial basis functions[J]. Medical Engineering & Physics, 2012, 34(5): 625-639. DOI:10.1016/j.medengphy.2012. 03.009
doi: 10.1016/j.medengphy.2012. 03.009
13 YOO D J. Heterogeneous porous scaffold design for tissue engineering using triply periodic minimal surfaces[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(4): 527-537. DOI:10.1007/s12541-012-0068-5
doi: 10.1007/s12541-012-0068-5
14 FU J, DING J H, ZHANG L, et al. Development of conformal shell lattices via laser powder bed fusion and unraveling their mechanical responses via modeling and experiments[J]. Additive Manufacturing, 2023, 62: 103406. DOI:10.1016/j.addma.2023.103406
doi: 10.1016/j.addma.2023.103406
15 CHI Z P, WANG Q H, LI J R, et al. A conformal design approach of TPMS-based porous microchannels with freeform boundaries[J]. Journal of Mechanical Design, 2023, 145(10): 102001. DOI:10.1115/1.4062881
doi: 10.1115/1.4062881
16 XU C Y, LI J R, WANG Q H, et al. Contour parallel tool path planning based on conformal parameterisation utilising mapping stretch factors[J]. International Journal of Production Research, 2019, 57(1): 1-15. DOI:10.1080/00207543.2018. 1456699
doi: 10.1080/00207543.2018. 1456699
17 LORENSEN W E, CLINE H E. Marching cubes: A high resolution 3D surface construction algorithm[J]. ACM SIGGRAPH Computer Graphics, 1987, 21(4): 163-169. DOI:10.1145/37402.37422
doi: 10.1145/37402.37422
18 AL-KETAN O, ROWSHAN R, AL-RUB R K ABU. Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials[J]. Additive Manufacturing, 2018, 19: 167-183. DOI:10.1016/j.addma.2017.12.006
doi: 10.1016/j.addma.2017.12.006
19 FLOATER M S. Mean value coordinates[J]. Computer Aided Geometric Design, 2003, 20(1): 19-27. DOI:10.1016/S0167-8396(03)00002-5
doi: 10.1016/S0167-8396(03)00002-5
[1] 李欣菁,潘万彬,杨烨,王毅刚,林成. 悬空区域侧损失双层次智能改善方法[J]. 浙江大学学报(理学版), 2023, 50(6): 781-794.
[2] 刘玉杰,原亚夫,孙晓瑞,李宗民. 局部信息和全局信息相结合的点云处理网络[J]. 浙江大学学报(理学版), 2023, 50(6): 770-780.
[3] 陈伟,戚谨雯,李坚,宋瑞霞. V-系统的快速变换算法[J]. 浙江大学学报(理学版), 2023, 50(6): 761-769.
[4] 张沛全,许威威. 哈希编码优化的IRON逆渲染模型:重建几何与材质[J]. 浙江大学学报(理学版), 2023, 50(6): 754-760.
[5] 程天琪,王雷,郭新萍,王钰帏,刘春香,李彬. LK-CAUNet:基于交叉注意的大内核多尺度可变形医学图像配准网络[J]. 浙江大学学报(理学版), 2023, 50(6): 745-753.
[6] 窦丰,马会文,谢昕洋,杨万文,石雪,韩丽,林彬. 广义无监督函数映射学习的三维形状密集对应方法[J]. 浙江大学学报(理学版), 2023, 50(6): 736-744.
[7] 夏兆辉,刘健力,高百川,聂涛,余琛,陈龙,余金桂. 面向多尺度拓扑优化的渐进均匀化GPU并行算法研究[J]. 浙江大学学报(理学版), 2023, 50(6): 722-735.
[8] 汪飞,李伟鸿,杨彧,姜大志,赵宝全,罗笑南. 动脉粥样硬化斑块生成的高效流固耦合不可压缩SPH模拟方法[J]. 浙江大学学报(理学版), 2023, 50(6): 711-721.
[9] 张泽初,彭伟龙,唐可可,余朝阳,Khan Asad,方美娥. 面向CBCT图像的金字塔微分同胚变形牙齿网格重建方法[J]. 浙江大学学报(理学版), 2023, 50(6): 701-710.
[10] 毛涵杨,彭晨,李晨,王长波. 面向开放表面的神经移动立方体算法[J]. 浙江大学学报(理学版), 2023, 50(6): 692-700.
[11] 苏科华,刘百略,雷娜,李可涵,顾险峰. 基于最优质量传输的Focus+Context可视化[J]. 浙江大学学报(理学版), 2023, 50(6): 681-691.
[12] 刘圣军,滕子,王海波,刘新儒. 基于函数映射的二维形状内蕴对称检测算法[J]. 浙江大学学报(理学版), 2023, 50(6): 668-680.
[13] 刘泽润,尹宇飞,薛文灏,郭蕊,程乐超. 基于扩散模型的条件引导图像生成综述[J]. 浙江大学学报(理学版), 2023, 50(6): 651-667.
[14] 谭晓东,赵奇,文明珠,王小超. 基于BEMD、DCT和SVD的混合图像水印算法[J]. 浙江大学学报(理学版), 2023, 50(4): 442-454.
[15] 方于华,叶枫. MFDC-Net:一种融合多尺度特征和注意力机制的乳腺癌病理图像分类算法[J]. 浙江大学学报(理学版), 2023, 50(4): 455-464.