Please wait a minute...
Chinese Journal of Engineering Design  2025, Vol. 32 Issue (5): 579-589    DOI: 10.3785/j.issn.1006-754X.2025.05.145
Theory and Method of Mechanical Design     
Method for efficient multi-machine collaborative operation driven by integration of edge computing and digital twin
Zhijie XIAO1,2(),Jiacheng XIE1,2,Xiaojun QIAO1,3,Xuewen WANG1,2(),Lang QIN1,2
1.College of Mechanical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2.Shanxi Key Laboratory of Fully Mechanized Coal Mining Equipment, Taiyuan University of Technology, Taiyuan 030024, China
3.Shanxi TZCO Construction Machinery Co. , Ltd. , Taiyuan 030000, China
Download: HTML     PDF(6934KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The mechanical equipment, due to its insufficient level of intelligence, is unable to perform complex operational tasks, and the mechanism for collaborative operation among the multiple machines is not clearly defined. Thus, by integrating edge computing, digital twin and multi-agent technology, a method for efficient multi-machine collaborative operation driven by the integration of edge computing and digital twin was proposed. Firstly, the terminal physical equipment Agent and the edge twin system Agent were constructed, and an edge-terminal cyber-physical symbiotic system applicable to various intelligent mechanical equipment was designed. Secondly, a dual-layer distributed collaborative operation mechanism was proposed, which was allowed both independent operation on an individual equipment and collaborative operation among multiple machines through direct physical interaction and indirect cyber-physical interaction. Finally, based on the existing equipment in the laboratory, the cyber-physical symbiotic systems for the detection robot and the operation robot were built. Through the robot collaborative operation experiment, the efficiencies of the cyber-physical symbiotic system and the dual-layer distributed collaborative operation mechanism were verified. The proposed method not only enhances the equipment's perception, decision-making and control capabilities, but also provides strong support for efficient multi-machine collaborative operation.



Key wordsedge computing      digital twin      multi-agent system      multi-machine collaboration     
Received: 07 May 2025      Published: 31 October 2025
CLC:  TP 39  
Corresponding Authors: Xuewen WANG     E-mail: x2831328166@163.com;wangxuewen@tyut.edu.cn
Cite this article:

Zhijie XIAO,Jiacheng XIE,Xiaojun QIAO,Xuewen WANG,Lang QIN. Method for efficient multi-machine collaborative operation driven by integration of edge computing and digital twin. Chinese Journal of Engineering Design, 2025, 32(5): 579-589.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2025.05.145     OR     https://www.zjujournals.com/gcsjxb/Y2025/V32/I5/579


边缘计算和数字孪生融合驱动的多机高效协同运行方法

机械装备由于智能化程度不够高,难以完成较为复杂的作业任务,并且装备间协同运行的机制尚不明确。由此,将边缘计算、数字孪生和多智能体技术相结合,提出了一种边缘计算和数字孪生融合驱动的多机高效协同运行方法。首先,构建了终端物理装备Agent和边缘孪生系统Agent,设计了一种适用于各类智能化机械装备的边端虚实共生系统;然后,提出了一种双层分布式协同运行机制,其既可在单一装备中独立运行,又可通过物理直接交互和虚实间接交互两种交互模式实现多机协同运行;最后,基于实验室现有装备,构建了探测机器人和作业机器人的边端虚实共生系统,并通过机器人协同作业实验,验证了边端虚实共生系统和双层分布式协同运行机制的有效性。所提出的方法既可以提高装备的感知、决策、控制能力,又为多机高效协同运行提供了有力支持。


关键词: 边缘计算,  数字孪生,  多智能体系统,  多机协同 
Fig.1 Overall framework of research of efficient multi-machine collaborative operation
Fig.2 Edge-terminal cyber-physical symbiotic system of mechanical equipment
Fig.3 Interactive network
Fig.4 Interactive process
Fig.5 Prototype system of robots
Fig.6 Interface of monitoring module for AgentE1
Fig.7 Interface of inference module for AgentE1
Fig.8 Global virtual scene construction process
Fig.9 Global cost map
Fig.10 Interface of control module for AgentE1
Fig.11 Interface of monitoring module for AgentE2
Fig.12 Interface of inference module for AgentE2
Fig.13 Robotic arm trajectory planning
Fig.14 Interface of control module for AgentE2
Fig.15 Site of robot collaborative operation
Fig.16 Operation robot navigation task
Fig.17 Work area of detection robot
Fig.18 Update of localized operational scenarios
Fig.19 Trajectory planning result for robotic arm
 
[[1]]   ZHENG P, WANG H H, SANG Z Q, et al. Smart manufacturing systems for industry 4.0: conceptual framework, scenarios, and future perspectives[J]. Frontiers of Mechanical Engineering, 2018, 13(2): 137-150.
[[2]]   TAO F, QI Q L. New IT driven service-oriented smart manufacturing: framework and characteristics[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 49(1): 81-91.
[[3]]   袁礼伟, 王耀南, 谭浩然, 等. 面向智能制造的自主可控工业互联网发展研究[J]. 中国工程科学, 2025, 27(3): 38-53. doi:10.15302/j-sscae-2024.12.027
YUAN L W, WANG Y N, TAN H R, et al. Independent and controllable industrial Internet for intelligent manufacturing[J]. Strategic Study of CAE, 2025, 27(3): 38-53.
doi: 10.15302/j-sscae-2024.12.027
[[4]]   GUO L, HE Y L, WAN C C, et al. From cloud manufacturing to cloud-edge collaborative manufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2024, 90: 102790.
[[5]]   王文波, 张映锋, 顾寄南, 等. 数据驱动的离散制造系统性能退化机理建模与预测控制方法研究[J]. 机械工程学报, 2024, 60(16): 400-411.
WANG W B, ZHANG Y F, GU J N, et al. Research on data-driven performance degradation mechanism modelling and predictive control method for discrete manufacturing system[J]. Journal of Mechanical Engineering, 2024, 60(16): 400-411.
[[6]]   赵威, 王锴, 徐皑冬, 等. 面向智能制造的工业机器人健康评估方法[J]. 机器人, 2020, 42(4): 460-468.
ZHAO W, WANG K, XU A D, et al. An industrial robot health assessment method for intelligent manufacturing[J]. Robot, 2020, 42(4): 460-468.
[[7]]   周晓天, 孙上, 张海霞, 等. 多接入边缘计算赋能的AI质检系统任务实时调度策略[J]. 电子与信息学报, 2024, 46(2): 662-670.
ZHOU X T, SUN S, ZHANG H X, et al. Real-time task scheduling for multi-access edge computing-enabled AI quality inspection systems[J]. Journal of Electronics & Information Technology, 2024, 46(2): 662-670.
[[8]]   阴艳超, 梁珉清, 张万达, 等. 基于云边协同的智能数控车间自调控系统研究与实现[J]. 计算机集成制造系统, 2025, 31(3): 828-840.
YIN Y C, LIANG M Q, ZHANG W D, et al. Research and implementation of intelligent NC workshop self-regulation system based on cloud-edge collaboration[J]. Computer Integrated Manufacturing Systems, 2025, 31(3): 828-840.
[[9]]   曹新城, 姚斌, 贺王鹏, 等. 面向数字加工监控的边云工艺协同迁移[J]. 西安电子科技大学学报, 2022, 49(6): 152-163.
CAO X C, YAO B, HE W P, et al. Edge-cloud collaborative transfer of process knowledge for digital manufacturing monitoring[J]. Journal of Xidian University, 2022, 49(6): 152-163.
[[10]]   陶飞, 张贺, 戚庆林, 等. 数字孪生模型构建理论及应用[J]. 计算机集成制造系统, 2021, 27(1): 1-15.
TAO F, ZHANG H, QI Q L, et al. Theory of digital twin modeling and its application[J]. Computer Integrated Manufacturing Systems, 2021, 27(1): 1-15.
[[11]]   KANG R H, HU J S, SHI Z H, et al. A high-precision digital twin modeling approach for the serial-parallel hybrid drilling robot in aircraft assembly[J]. Robotics and Computer-Integrated Manufacturing, 2025, 94: 102986.
[[12]]   田颖,湛杨,岳辰,等.基于融合孪生模型的数控机床轮廓误差预测方法[J/OL].计算机集成制造系统, 31(7):2392-2401.
TIAN Y, ZHAN Y, YUE C, et al. Contour error prediction method for CNC machine tools based on an integrated twin model[J/OL]. Computer Integrated Manufacturing Systems, 31(7): 2392-2401.
[[13]]   胡炳涛, 钟锐锐, 冯毅雄, 等. 人-信息-物理互联环境下数字车间制造能力建模与自适应调度[J]. 机械工程学报, 2025, 61(3): 23-39.
HU B T, ZHONG R R, FENG Y X, et al. Digital shop floor manufacturing capability modeling and adaptive scheduling in human-cyber-physical interconnected environment[J]. Journal of Mechanical Engineering, 2025, 61(3): 23-39.
[[14]]   葛世荣, 张帆, 王世博, 等. 数字孪生智采工作面技术架构研究[J]. 煤炭学报, 2020, 45(6): 1925-1936.
GE S R, ZHANG F, WANG S B, et al. Digital twin for smart coal mining workface: Technological frame and construction[J]. Journal of China Coal Society, 2020, 45(6): 1925-1936.
[[15]]   薛杨, 刘森, 吕杰, 等. 基于耦合场快速计算的核电厂主变压器数字孪生体搭建[J]. 工程设计学报, 2024, 31(6): 716-724.
XUE Y, LIU S, LÜ J, et al. Construction of digital twin of nuclear power plant main transformer based on fast calculation of coupling field[J]. Chinese Journal of Engineering Design, 2024, 31(6): 716-724.
[[16]]   LI W F, FAN H X, CAI L, et al. Digital twin-driven proactive-reactive scheduling framework for port multi-equipment under a complex uncertain environment[J]. Simulation Modelling Practice and Theory, 2024, 136: 103011.
[[17]]   王哲, 丰飞, 郭峰. 大尺度复杂构件群体机器人协同并行制造系统集成的关键技术[J]. 航空制造技术, 2025, 68(4): 53-66.
WANG Z, FENG F, GUO F. Key technologies of swarm robotic cooperative parallel manufacturing system integration for large scale complex components[J]. Aeronautical Manufacturing Technology, 2025, 68(4): 53-66.
[[18]]   段现银, 邵宇轩, 彭芳瑜, 等. 基于数字孪生的复杂件多机器人智能加工方法[J]. 华中科技大学学报(自然科学版), 2024, 52(6): 1-9.
DUAN X Y, SHAO Y X, PENG F Y, et al. Digital twins based multi-robot intelligent machining method for complex components[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2024, 52(6): 1-9.
[[19]]   陈璇, 舒亮, 冷玉祥, 等. 断路器柔性装配车间数字孪生系统设计[J]. 计算机工程与应用, 2022, 58(14): 245-257.
CHEN X, SHU L, LENG Y X, et al. Design of digital twin system for circuit breaker flexible assembly workshop[J]. Computer Engineering and Applications, 2022, 58(14): 245-257.
[[20]]   李松, 李顺, 王博文, 等. 数字孪生边缘网络端到端时延优化的任务卸载与资源分配方法[J]. 电子与信息学报, 2025, 47(3): 633-644.
LI S, LI S, WANG B W, et al. Task offloading and resource allocation method for end-to-end delay optimization in digital twin edge networks[J]. Journal of Electronics & Information Technology, 2025, 47(3): 633-644.
[[21]]   郑家瑜, 麦著学, 陈哲毅. 数字孪生云边网络下服务缓存与计算卸载优化[J/OL]. 系统仿真学报, 2024: 1-13. (2024-08-23). .
ZHENG J Y, MAI Z X, CHEN Z Y. Optimization of service cache and computing unloading in digital twin cloud edge network[J/OL]. China Industrial Economics, 2024: 1-13. (2024-08-23). .
[[22]]   马靖, 王译晨, 赵明, 等. 基于数字孪生的生产单元可视化管控[J]. 计算机集成制造系统, 2021, 27(5): 1256-1268.
MA J, WANG Y C, ZHAO M, et al. Visualization management and control methods of production cell based on digital twin[J]. Computer Integrated Manufacturing Systems, 2021, 27(5): 1256-1268.
[[23]]   张超, 周光辉, 肖佳诚, 等. 数字孪生制造单元多维多尺度建模与边—云协同配置[J]. 计算机集成制造系统, 2023, 29(2): 355-371.
ZHANG C, ZHOU G H, XIAO J C, et al. Multi-dimensional and multi-scale modeling and edge-cloud collaborative configuration method for digital twin manufacturing cell[J]. Computer Integrated Manufacturing Systems, 2023, 29(2): 355-371.
[[24]]   陶飞, 马昕, 戚庆林, 等. 数字孪生连接交互理论与关键技术[J]. 计算机集成制造系统, 2023, 29(1): 1-10.
TAO F, MA X, QI Q L, et al. Theory and key technologies of digital twin connection and interaction[J]. Computer Integrated Manufacturing Systems, 2023, 29(1): 1-10.
[[25]]   侯祥鹏, 兰兰, 陶长乐, 等. 边缘智能与协同计算: 前沿与进展[J]. 控制与决策, 2024, 39(7): 2385-2404.
HOU X P, LAN L, TAO C L, et al. Edge intelligence and collaborative computing: frontiers and advances[J]. Control and Decision, 2024, 39(7): 2385-2404.
[[26]]   王学文, 刘曙光, 王雪松, 等. 面向多人-多机复杂协作任务的煤矿XR智能运维系统[J]. 煤炭学报, 2024, 49(4): 2124-2140.
WANG X W, LIU S G, WANG X S, et al. Research on coal mine XR intelligent operation and maintenance system for complex collaborative tasks involving multiple humans and multiple robots[J]. Journal of China Coal Society, 2024, 49(4): 2124-2140.
[1] Bailin LI,Yunfan MA,Yurui CHEN,Yuanlin LUO,Fanwu CHU,Wenlong FU. Research on transformer hotspot temperature prediction and warning technology based on digital twin[J]. Chinese Journal of Engineering Design, 2025, 32(3): 281-295.
[2] Di PANG,Zhe WEI,Mo CHEN,Kai ZHANG. A task offloading scheme based on number of scene characters: for cloud edge collaborative intelligent monitoring system[J]. Chinese Journal of Engineering Design, 2024, 31(6): 689-696.
[3] Yang XUE,Sen LIU,Jie Lü,Jin PENG,Hengyuan SI. Construction of digital twin of nuclear power plant main transformer based on fast calculation of coupling field[J]. Chinese Journal of Engineering Design, 2024, 31(6): 716-724.
[4] Baoyin SUN,Yongping HAO,Yuhan ZHANG,Ziyang LI. Research on automatic winding system of thermal battery insulation cotton based on digital twin[J]. Chinese Journal of Engineering Design, 2024, 31(4): 538-546.
[5] Zhangwei XIE,Xingbo ZHANG,Zhe XU,Yu ZHANG,Fengyun ZHANG,Xi WANG,Pingping WANG,Shufeng SUN,Haitao WANG,Jixin LIU,Weili SUN,Aixia CAO. Construction of surface temperature monitoring system for laser machining parts based on digital twin[J]. Chinese Journal of Engineering Design, 2023, 30(4): 409-418.
[6] Zhe XU,Shufeng SUN,Xingbo ZHANG,Xi WANG,Fengyun ZHANG,Pingping WANG,Zhangwei XIE,Yu ZHANG,Jixin LIU,Weili SUN,Aixia CAO. Interactive control system of optical displacement stage based on digital twin[J]. Chinese Journal of Engineering Design, 2023, 30(2): 254-261.
[7] Xu-hui ZHANG,Jia-shan JU,Wen-juan YANG,Xin-yuan Lü. Predictive maintenance system for complex mining equipment based on digital twin[J]. Chinese Journal of Engineering Design, 2022, 29(5): 643-650.
[8] FU Gui-wu, WANG Xing-bo, TIAN Ying. Research on application of digital twin based on intelligent production line of five-axis machining center[J]. Chinese Journal of Engineering Design, 2021, 28(4): 426-432.
[9] BAI Zhong-hang, SUN Yi-wei, XU Tong, DING Man. Construction of product digital twin model based on design task in conceptual design[J]. Chinese Journal of Engineering Design, 2020, 27(6): 681-689.
[10] WANG An-bang, SUN Wen-bin, DUAN Guo-lin. Research on intelligent method of manufacturing and processing equipment based on digital twin and deep learning technology[J]. Chinese Journal of Engineering Design, 2019, 26(6): 666-674.
[11] YU Lei, GUO Ying, DU Juan. Test and application of UML-based multi-agent system[J]. Chinese Journal of Engineering Design, 2007, 14(1): 11-15.