Please wait a minute...
Chinese Journal of Engineering Design  2023, Vol. 30 Issue (6): 728-737    DOI: 10.3785/j.issn.1006-754X.2024.03.165
Reliability and Quality Design     
Prediction of longitudinal vibration characteristics of new vertical-axis roadheader under multiple excitation
Miao XIE(),Junjie SHI,Hongyu ZHANG,Yun ZHU
School of Mechanical Engineering, Liaoning Technical University, Fuxin 123000, China
Download: HTML     PDF(4757KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In view of the problems of parts damage and stability reduction caused by a large amount of vibration during roadheader cutting, the vibration characteristics of the new vertical-axis roadheader was analyzed and predicted based on the longitudinal cutting condition. Firstly, the force on the cutting head of the roadheader was analyzed, and the force on the track was analyzed by Bekker subsidence theory. Then, taking the contact force between track and bottom plate and the cutting load as external excitation, the longitudinal nonlinear dynamics model of roadheader was established by using Lagrange equation. Next, based on the Runge-Kutta variable step size algorithm, the dynamics model of roadheader was solved using MATLAB software, and the solution results were compared with experimental results to verify the correctness of the dynamics model. Finally, the dynamics model was used to predict the vibration displacement of key parts of the roadheader under different stabilizing mechanism stiffness. The results showed that the vibration of the whole roadheader was in a chaotic state under the combined influence of multiple external excitation. The roll vibration displacement was small, and the pitch vibration was dominant. With the increasing of the stabilizing mechanism stiffness, the vibration displacement of key parts of the roadheader showed a significant decreasing trend. When the stiffness of the stabilizing mechanism increased to 3 times of the initial stiffness, the vibration displacement of the roadheader body decreased by 29%, the vibration displacement of the cutting arm decreased by 22%, and the vibration displacement of the cutting head decreased by 20%. The research results prove that the vibration response of roadheader can be reduced effectively by increasing the stiffness of stabilizing mechanism, which provides theoretical basis for the stability improvement and structural optimization of roadheader.



Key wordsvertical-axis roadheader      nonlinear vibration      dynamics model      vibration displacement      stiffness of stabilizing mechanism     
Received: 15 May 2023      Published: 02 January 2024
CLC:  TH 113.1  
Cite this article:

Miao XIE,Junjie SHI,Hongyu ZHANG,Yun ZHU. Prediction of longitudinal vibration characteristics of new vertical-axis roadheader under multiple excitation. Chinese Journal of Engineering Design, 2023, 30(6): 728-737.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.03.165     OR     https://www.zjujournals.com/gcsjxb/Y2023/V30/I6/728


多激励下新型纵轴式掘进机的纵向振动特性预测

针对目前掘进机截割时因产生大量振动而导致零部件受损及稳定性降低的问题,基于纵向截割工况,对新型纵轴式掘进机的振动特性进行分析和预测。首先,对掘进机截割头的受力进行分析,并运用Bekker沉陷理论对履带受力进行分析。然后,将履带与底板之间的接触力和截割载荷作为外部激励,采用拉格朗日方程建立掘进机的纵向非线性动力学模型。接着,基于Runge-Kutta变步长算法,利用MATLAB软件对掘进机动力学模型进行求解,并将求解结果与实验结果进行比较,验证了动力学模型的正确性。最后,利用所构建的动力学模型对不同支稳机构刚度下掘进机关键部位的振动位移进行预测。结果表明:在多个外部激励的复合影响下,掘进机整机的振动处于混沌状态,其横滚振动位移很小,俯仰振动占主导地位;随着支稳机构刚度的递增,掘进机关键部位的振动位移呈显著减小趋势,当支稳机构的刚度增大至初始刚度的3倍时,掘进机机身的振动位移减小了29%,截割臂振动位移减小了22%,截割头振动位移减小了20%。研究结果证明增大支稳机构刚度可有效减小掘进机的振动响应,这可为掘进机的稳定性提升和结构优化提供理论依据。


关键词: 纵轴式掘进机,  非线性振动,  动力学模型,  振动位移,  支稳机构刚度 
Fig.1 Longitudinal force analysis for cutting head
Fig.2 Longitudinal nonlinear dynamics model of new vertical-axis roadheader
参数量值
截割头等效质量m11 050 kg
截割臂等效质量m212 155 kg
回转台等效质量m221 060 kg
机身等效质量m358 200 kg
履带支撑点等效质量mambmcmd1 937 kg
铲斗等效质量me1 500 kg
后支撑等效质量mfmg700 kg
机身俯仰转动惯量J15 900 kg·m2
机身横滚转动惯量J23 100 kg·m2
截割头与截割臂连接处等效刚度k12.1×105 N/m
支撑油缸的等效刚度k24.2×105 N/m
回转油缸的等效刚度k21k223.1×105 N/m
回转台与机身连接处等效刚度k35.5×106 N/m
支稳机构与机身连接处等效刚度k31k321.7×105 N/m
履带与机身连接处等效刚度kakbkckd2.7×105 N/m
铲斗与机身连接处等效刚度ke3.6×105 N/m
后支撑与机身连接处等效刚度kfkg4.7×105 N/m
截割头与截割臂连接处等效阻尼c1150 N·s/m
支撑油缸的等效阻尼c2120 N·s/m
回转油缸的等效阻尼c21c22100 N·s/m
回转台与机身连接处等效阻尼c370 N·s/m
支稳机构与机身连接处等效阻尼c31c32140 N·s/m
履带与机身连接处等效阻尼cacbcccd240 N·s/m
铲斗与机身连接处等效阻尼ce100 N·s/m
后支撑与机身连接处等效阻尼cfcg120 N·s/m
截割臂支撑油缸与回转台所成夹角θ25o
回转油缸与回转台所成夹角βγ21o
铲斗油缸与机身所成夹角α-32o
后支撑与机身所成夹角στ-44o
履带前支撑点到铲斗与机身连接点的距离p0.40 m
机身重心与履带前支撑点的距离q1.20 m
机身重心与履带后支撑点的距离r1.28 m
履带后支撑点与后支撑的距离s0.52 m
机身重心与各支撑结构的距离uvtw0.80 m
Table 1 Key parameters of new vertical-axis road-header
Fig.3 Theoretical vibration displacement curve of each part of roadheader
Fig.4 Vibration amplitude frequency curve of gravity center of roadheader body
Fig.5 Variation curves of pitch angle and roll angle of roadheader body
Fig.6 Vibration phase diagram of roadheader body
Fig.7 Experimental bench for roadheader cutting‒vibration test
Fig.8 Measured displacement curve of each part of roadheader
对比项振动位移峰值振动位移均方根值
截割头截割臂机身截割头截割臂机身
相对误差/%27.1216.138.879.1111.427.08
理论计算值16.159.464.514.593.492.54
实测值22.1611.284.115.053.942.36
Table 2 Comparison of theoretical calculation value and measured value of vibration displacement of roadheader
Fig.9 Vibration displacement curves of roadheader under different stabilizing mechanism stiffness
Fig.10 Comparison of root mean square value of vibration displacement of roadheader under different stabilizing mechanism stiffness
[1]   谢苗,朱昀,刘杰,等.基于改进离散方法的截割稳定性预测分析[J].中国机械工程,2023,34(18):2153-2164. doi:10.3969/j.issn.1004-132X.2023.18.002
XIE M, ZHU Y, LIU J, et al. Prediction and analysis of cutting stability based on improved discrete method[J]. China Mechanical Engineering, 2023, 34(18): 2153-2164.
doi: 10.3969/j.issn.1004-132X.2023.18.002
[2]   卢进南,毛君,谢苗,等.巷道超前支架全支撑态动力学模型[J].煤炭学报,2015,40(1):50-57.
LU J N, MAO J, XIE M, et al. Dynamics model of advanced powered support in heading under full support situation[J]. Journal of China Coal Society, 2015, 40(1): 50-57.
[3]   谢苗,张保国,王鹏飞,等.基于相似理论的掘进机主动激振截割性能研究[J].工程设计学报,2021,28(5):576-584. doi:10.3785/j.issn.1006-754X.2021.00.075
XIE M, ZHANG B G, WANG P F, et al. Research on active excitation cutting performance of roadheader based on similarity theory[J]. Chinese Journal of Engineering Design, 2021, 28(5): 576-584.
doi: 10.3785/j.issn.1006-754X.2021.00.075
[4]   李晓豁,何洋,李婷,等.纵轴式掘进机横向和纵向随机振动响应的分析[J].煤炭学报,2014,39(3):580-585.
LI X H, HE Y, LI T, et al. Analysis of horizontal and vertical random vibration responses of longitudinal roadheader[J]. Journal of China Coal Society, 2014, 39(3): 580-585.
[5]   李晓豁,刘霞,焦丽,等.不同工况下滑行式刨煤机的动态仿真研究[J].煤炭学报,2010,35(7):1202-1206.
LI X H, LIU X, JIAO L, et al. Dynamic simulation of sliding coal plow under different working conditions[J]. Journal of China Coal Society, 2010, 35(7): 1202-1206.
[6]   李晓豁.掘进机截割头随机载荷的模拟研究[J].煤炭学报,2000,25(5):525-529. doi:10.3321/j.issn:0253-9993.2000.05.018
LI X H. Simulation study of random loads on a cutting head of roadheader[J]. Journal of China Coal Society, 2000, 25(5): 525-529.
doi: 10.3321/j.issn:0253-9993.2000.05.018
[7]   陈洪月,刘烈北,马英,等.随机激励下掘锚联合机纵向非线性振动特性分析[J].中国机械工程,2015,26(17):2378-2384. doi:10.3969/j.issn.1004-132X.2015.17.018
CHEN H Y, LIU L B, MA Y, et al. Analysis of vertical nonlinear vibration characteristics for bolter system on roadheader under random excitation[J]. China Mechanical Engineering, 2015, 26(17): 2378-2384.
doi: 10.3969/j.issn.1004-132X.2015.17.018
[8]   李晓豁,沃鸣杰,邓云,等.基于履带与底板交互作用的掘进机虚拟样机建模及仿真[J].世界科技研究与发展,2012,34(6):885-887. doi:10.3969/j.issn.1006-6055.2012.06.003
LI X H, WO M J, DENG Y, et al. Virtual prototype modeling of roadheader based on interaction between ground and track[J]. World Sci-Tech R & D, 2012, 34(6): 885-887.
doi: 10.3969/j.issn.1006-6055.2012.06.003
[9]   刘丽娟.EBZ-132型纵轴式掘进机虚拟样机建模与动力学分析[D].武汉:中国地质大学,2013:26-36. doi:10.4028/www.scientific.net/amm.278-280.295
LIU L J. Virtual prototype modeling and dynamics analysis of EBZ-132-type longitudinal roadheader[D]. Wuhan: China University of Mining Technology, 2013: 26-36.
doi: 10.4028/www.scientific.net/amm.278-280.295
[10]   周游,李国顺,唐进元.截齿截割煤岩的LS_DYNA仿真模拟[J].工程设计学报,2011,18(2):103-108. doi:10.3785/j.issn.1006-754X.2011.02.006
ZHOU Y, LI G S, TANG J Y. Simulation and analysis for pick cutting rock by LS_DYNA[J]. Chinese Journal of Engineering Design, 2011, 18(2): 103-108.
doi: 10.3785/j.issn.1006-754X.2011.02.006
[11]   李军,李强,周靖凯,等.软土条件下履带-地面相互作用分析[J].兵工学报,2012,33(12):1423-1429.
LI J, LI Q, ZHOU J K, et al. Analysis of track-terrain interaction on soft soil[J]. Acta Armamentarii, 2012, 33(12): 1423-1429.
[12]   刘辉,靳帅.不同工况下掘进机水平方向振动特性分析[J].机械设计与研究,2020,36(5):198-202.
LIU H, JIN S. Analysis of horizontal vibration characteristics of roadheader under different working conditions[J]. Machine Design & Research, 2020, 36(5): 198-202.
[13]   何洋,李晓豁,席亚兵.纵轴式掘进机截割头振动特性分析[J].机械设计与研究,2023,39(2):176-181.
HE Y, LI X H, XI Y B. Vibration characteristics analyzing of cutting head for longitudinal roadheader[J]. Machine Design & Research, 2023, 39(2): 176-181.
[14]   李晓婧.含有主动激振的掘进机系统振动特性及其对截割载荷的影响研究[D].阜新:辽宁工程技术大学,2019:32-62.
LI X J. Study on vibration characteristics of roadheader system with active excitation and its influence on cutting load[D]. Fuxin: Liaoning Technical University, 2019: 32-62.
[15]   陈洪月,王箐谕,张坤,等.基于虚拟激励法的采煤机截割部振动响应分析[J].机械设计,2019,36(12):57-64.
CHEN H Y, WANG Q Y, ZHANG K, et al. Vibration-response analysis on the shearer’s cutting section based on the virtual excitation method[J]. Journal of Machine Design, 2019, 36(12): 57-64.
[16]   谢苗,王贺,刘杰,等.基于振动模型的掘进机截割系统稳定性预测[J].振动、测试与诊断,2023,43(3):563-571.
XIE M, WANG H, LIU J, et al. Stability prediction of roadheader cutting system based on vibration model[J]. Journal of Vibration, Measurement & Diagnosis, 2023, 43(3): 563-571.
[17]   张美晨,赵丽娟,李明昊,等.基于双向耦合法的采煤机螺旋滚筒振动特性分析及实验研究[J/OL].煤炭科学技术:1-16(2023-06-07)[2023-07-06]..
ZHANG M C, ZHAO L J, LI M H, et al. Analysis and experimental study on the vibration characteristics of the spiral drum of a shearer based on twoway coupling method[J/OL]. Coal Science and Technology: 1-16 (2023-06-07) [2023-07-06]. .
[18]   杨阳.基于振动测试的掘进机关键结构动态特性研究[D].北京:中国矿业大学(北京),2017:105-135.
YANG Y. Research on the dynamic features of the critical structures on the road-header based on vibration measurements underground[D]. Beijing: China University of Mining and Technology-Beijing, 2017: 105-135.
[19]   赵丽娟,田震,孙影,等.纵轴式掘进机振动特性研究[J]. 振动与冲击,2013,32(11):17-20. doi:10.3969/j.issn.1000-3835.2013.11.004
ZHAO L J, TIAN Z, SUN Y, et al. Vibration characteristics of a longitudinal roadheader[J]. Journal of Vibration and Shock, 2013, 32(11): 17-20.
doi: 10.3969/j.issn.1000-3835.2013.11.004
[20]   李朋朋,刘纪平,闫浩文,等.基于方向关系矩阵的空间方向相似性计算改进模型[J].测绘科学技术学报,2018,35(2):216-220.
LI P P, LIU J P, YAN H W, et al. An improved model for calculating the similarity of spatial direction based on direction relation matrix[J]. Journal of Geomatics Science and Technology, 2018, 35(2): 216-220.
[1] Di ZHAO,Guo CHEN,Xiaoli CHEN,Xiongjin WANG. Terrain adaptive mechanism design and obstacle-surmounting performance analysis of wheeled search and rescue robot[J]. Chinese Journal of Engineering Design, 2023, 30(5): 579-589.
[2] Weijie DUAN,Huibin QIN,Rong LIU,Zhongyi LI,Shaoping BAI. Design and performance analysis of reconfigurable variable stiffness compliant actuator[J]. Chinese Journal of Engineering Design, 2023, 30(2): 262-270.
[3] Yao ZHANG,Xiao-hua ZHU,Liang-liang DONG. Research on rubber damping flexible fixture for weakly rigid casing[J]. Chinese Journal of Engineering Design, 2022, 29(5): 587-594.
[4] Fu-qiang ZHAO,Te DU,Bao-yu CHANG,Zhi-gang NIU. Dynamics analysis and experimental research on leg lifting condition of limb-leg crawler foot mechanism[J]. Chinese Journal of Engineering Design, 2022, 29(4): 474-483.
[5] CAO En-guo, WANG Gang, WANG Kun, GAO Yang. Evaluation of walking aid effectiveness of exoskeleton driven by elastic device[J]. Chinese Journal of Engineering Design, 2021, 28(4): 480-488.
[6] LIU Xiao-yu, TIAN Ying, ZHANG Ming-lu. Review of underwater manipulator dynamics research[J]. Chinese Journal of Engineering Design, 2021, 28(4): 389-398.
[7] MO Li, JIA Du-ping, MAO Liang-jie, WANG Guo-rong. Experimental study on the vibration mechanism of horizontal well completion pipe string under different gas production[J]. Chinese Journal of Engineering Design, 2020, 27(6): 690-697.
[8] WEI Chun-yu, CAI Yue, LIU Ming-he, ZHANG Qi, JIA Qian-zhong. Design and simulation of new vibration isolation platform for vehicle medical rescue[J]. Chinese Journal of Engineering Design, 2018, 25(5): 532-538.
[9] WANG Jie, QIAN Li-qin, CHEN Xin-long, SUN Qiao-lei, DENG Zi-qiang, FENG Ding. Dynamics model and analysis of the lifting system of automatic catwalk[J]. Chinese Journal of Engineering Design, 2016, 23(5): 437-443,460.
[10] HU Shi-cheng, SONG Jing-jing, WANG Xiang-jun. Dynamics modeling and analysis on boom system of wet spraying machine[J]. Chinese Journal of Engineering Design, 2014, 21(3): 227-234.
[11] ZHOU Chao, WU Qing-Ming, ZHANG Qiang, LI Yong. Nonlinear vibration analysis of viscoelastic isolator[J]. Chinese Journal of Engineering Design, 2009, 16(3): 205-209.