Please wait a minute...
Chin J Eng Design  2022, Vol. 29 Issue (5): 587-594    DOI: 10.3785/j.issn.1006-754X.2022.00.068
Modeling, Simulation, Analysis and Decision     
Research on rubber damping flexible fixture for weakly rigid casing
Yao ZHANG(),Xiao-hua ZHU(),Liang-liang DONG
School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China
Download: HTML     PDF(4205KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Because of the low radial stiffness of the thin-walled casing, chatter is easy to occur during machining, which affects the machining quality and efficiency of the workpiece surface. Therefore, a rubber damping flexible fixture was designed, which could support the inner wall of the workpiece in a large area, thereby improving the processing stiffness of the workpiece. An equivalent dynamics model of workpiece-fixture system was established, and the accuracy of the model was verified by the milling experiment of the casing. The vibration reduction performances of rubber damping flexible fixture and traditional fixture were compared and analyzed. The influence of milling force loading frequency, pressure of platen, pressure of T-shaped platen and pressure of pushing block on the vibration of workpiece-fixture system was studied. The results showed that the acceleration effective value of the workpiece under the working condition with damping fixture was reduced by 43.33% compared with the traditional fixture; with rubber damping flexible fixture, the workpiece could avoid the frequency range of violent vibration in the range of 400-900 Hz, and the vibration amplitude was greatly reduced; with the increase of the pressure of platen, the acceleration effective value of the workpiece decreased first and then increased; for workpieces with different heights, different pressures of platen should be used to reduce the vibration of workpieces during processing; in actual processing, the pressure of T-shaped platen should exceed 3.56 MPa, and the pressure of pushing block should exceed 0.26 MPa, that was, the thrust of hydraulic cylinder should exceed 20 kN. The research result has important guiding significance for the field application of rubber damping flexible fixture.



Key wordsthin-walled casing      milling vibration      damping clamp      dynamics model     
Received: 01 November 2021      Published: 02 November 2022
CLC:  TH 164  
Corresponding Authors: Xiao-hua ZHU     E-mail: 1623977166@qq.com;zxhth113@163.com
Cite this article:

Yao ZHANG,Xiao-hua ZHU,Liang-liang DONG. Research on rubber damping flexible fixture for weakly rigid casing. Chin J Eng Design, 2022, 29(5): 587-594.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2022.00.068     OR     https://www.zjujournals.com/gcsjxb/Y2022/V29/I5/587


弱刚性机匣橡胶减振柔性夹具研究

薄壁机匣的径向刚度低,在加工过程中易出现颤振,影响工件表面加工质量和加工效率。因此,设计了一种橡胶减振柔性夹具,其可大面积地支撑工件内壁,从而提高工件的加工刚度。建立了工件?夹具系统等效动力学模型,通过机匣铣削实验验证了模型的准确性。对比分析了橡胶减振柔性夹具与传统夹具的减振性能,研究了铣削力加载频率、压板压力、T形压板压力和推动块压力对工件?夹具系统的振动影响。结果表明:工件在采用减振夹具工况下加速度有效值相较于采用传统夹具减小了43.33%;采用橡胶减振柔性夹具后,工件可以避开400~900 Hz范围内剧烈振动的频率区间,振动幅度大大减小;随着压板压力的增大,工件加速度有效值先减小后增大;针对不同高度工件,应采用不同的压板压力,以减小加工过程中工件的振动;在实际加工中,T形压板压力应超过3.56 MPa,推动块压力应超过0.26 MPa,即液压缸推力超过20 kN。研究结果对橡胶减振柔性夹具的现场应用具有重要的指导意义。


关键词: 机匣薄壁件,  铣削振动,  减振夹具,  动力学模型 
Fig.1 Structure of rubber damping flexible fixture
Fig.2 Stress‒strain relation curve of natural rubber
Fig. 3 Actual structure and simplified structure of casing
Fig.4 Equivalent dynamics model of workpiece-fixture system
Fig.5 Milling area of casing
Fig.6 Milling vibration detection process of Casing
Fig.7 Comparison between the measured and simulated acceleration of workpiece
Fig.8 Structure of traditional fixture
Fig.9 Equivalent dynamics model of workpiece traditional fixture
Fig.10 Acceleration response curve of workpiece under working condition with traditional fixture and damping fixture
Fig.11 Acceleration curve of workpiece under different loading frequency of milling force
Fig.12 Acceleration effective value of workpiece under different loading frequency of milling force
Fig.13 Acceleration effective value of workpiece under different pressures of platen
Fig.14 Contact stress of inner wall of workpiece under different pressure of platen
Fig.15 Acceleration effective value of workpieces with different heights under different pressures of platen
机匣高度/mm压板压力/MPa
3000.063 1~0.082 0
400,5000.044 2~0.082 0
600,700,8000.025 2~0.063 1
Table 1 Recommended values of pressure of platen corresponding to different casing heights
Fig.16 Acceleration effective value of workpiece under different pressure of T-shaped platen
Fig.17 Acceleration effective value of workpiece under different pressures of pushing block
[1]   ARNAUD L, GONZALO O, SEGUY S, et al. Simulation of low rigidity part machining applied to thin-walled structures[J]. International Journal of Advanced Manufacturing Technology, 2011, 54(5/8): 479-488. doi:10.1007/s00170-010-2976-9
doi: 10.1007/s00170-010-2976-9
[2]   张明亮,张德远,刘佳佳,等.钛合金薄壁件高速超声椭圆振动铣削机理和试验[J].北京航空航天大学学报,2019,45(8):1606-1612.
ZHANG Ming-liang, ZHANG De-yuan, LIU Jia-jia, et al. Mechanism and experiment of high-speed ultrasonic elliptical vibration milling of thin-walled titanium alloy parts[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(8): 1606-1612.
[3]   张明亮,姜兴刚,刘佳佳,等.钛合金超声椭圆振动铣削参数对切削力的影响[J].电加工与模具,2017(6):39-41. doi:10.3969/j.issn.1009-279X.2017.06.010
ZHANG Ming-liang, JIANG Xing-gang, LIU Jia-jia, et al. Influence of ultrasonic elliptical vibration milling parameters with titanium alloy on the cutting force[J]. Electromachining & Mould, 2017(6): 39-41.
doi: 10.3969/j.issn.1009-279X.2017.06.010
[4]   CAMPA F J, DE LOPEZ L N L, CELAYA A. Chatter avoidance in the milling of thin floors with bull-nose end mills: Model and stability diagrams[J]. International Journal of Machine Tools and Manufacture, 2011, 51(1): 43-53. doi:10.1016/j.ijmachtools.2010.09.008
doi: 10.1016/j.ijmachtools.2010.09.008
[5]   WAN M, GAO T-Q, FENG J, et al. On Improving chatter stability of thin-wall milling by prestressing[J]. Journal of Materials Processing Technology, 2019, 264: 32-44. doi:10.1016/j.jmatprotec.2018.08.042
doi: 10.1016/j.jmatprotec.2018.08.042
[6]   ZHANG X, YU T, WANG W, et al. Three-dimensional process stability prediction of thin-walled workpiece in milling operation[J]. Machining Science and Technology, 2016, 20(3): 406-424. doi:10.1080/10910344.2016. 1191027
doi: 10.1080/10910344.2016. 1191027
[7]   LI Z, SUN Y, GUO D. Chatter prediction utilizing stability lobes with process damping in finish milling of titanium alloy thin-walled workpiece[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(9/12): 2663-2674. doi:10.1007/s00170-016-9834-3
doi: 10.1007/s00170-016-9834-3
[8]   刘晓晨,陈坚,崔巍,等.固体火箭发动机振动夹具设计及动态特性分析[J].强度与环境,2020,47(2):56-63.
LIU Xiao-chen, CHEN Jian, CUI Wei, et al. Design and analysis of dynamic characteristics of vibration fixture with solid propellant rocket engine[J]. Structure & Environment Engineering, 2020, 47(2): 56-63.
[9]   王世辉,张昱,陈欣欣,等.固体火箭发动机振动试验夹具优化分析与研究[J].计算机测量与控制,2017,25(1): 221-223. doi:10.16526/j.cnki.11-4762/tp.2017.01.061
WANG Shi-hui, ZHANG Yu, CHEN Xin-xin, et al. Vibration test fixture optimization analysis and control for solid rocket motor[J]. Computer Measurement & Control, 2017, 25(1): 221-223.
doi: 10.16526/j.cnki.11-4762/tp.2017.01.061
[10]   AOYAMA T, KAKINUMA Y. Development of fixture devices for thin and compliant workpieces[J]. CIRP Annals, 2005, 54(1): 325-328. doi:10.1016/s0007-8506(07)60114-0
doi: 10.1016/s0007-8506(07)60114-0
[11]   崔惠婷,陈蔚芳,冯婷.装夹优化抑制薄壁件加工振动研究[J].组合机床与自动化加工技术,2016(5):138-142.
CUI Hui-ting, CHEN Wei-fang, FENG Ting. The study on vibration suppression for thin-walled parts based on fixture optimization[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2016(5): 138-142.
[12]   刘玉梅,姜兆亮,刘文平,等.基于薄板件装夹变形控制的夹紧点位置优化方法研究[J].组合机床与自动化加工技术,2011(7):23-25. doi:10.3969/j.issn.1001-2265.2011.07.007
LIU Yu-mei, JIANG Zhao-liang, LIU Wen-ping, et al. Research on clamping-point optimization based on control of the deformation in fixing thin-walled workpiece[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2011(7): 23-25.
doi: 10.3969/j.issn.1001-2265.2011.07.007
[13]   于金,刘成林,朱秀峰,等.薄壁件装夹位置优选方案有限元分析与实验研究[J].航空精密制造技术, 2013,49(6):30-32. doi:10.3969/j.issn.1003-5451.2013.06.008
YU Jin, LIU Cheng-lin, ZHU Xiu-feng, et al. Finite element analysis and experimental research for optimization scheme of thin-walled clamping location[J]. Aviation Precision Manufacturing Technology, 2013, 49(6): 30-32.
doi: 10.3969/j.issn.1003-5451.2013.06.008
[14]   TUYSUZ O, ALTINTAS Y. Time-domain modeling of varying dynamic characteristics in thin-wall machining using perturbation and reduced-order substructuring methods[J]. Journal of Manufacturing Science and Engineering, 2018, 140(1): 11-15. doi:10.1115/1. 4038000
doi: 10.1115/1. 4038000
[15]   王晓静,张松,贾秀杰.航空发动机整体机匣铣‒车复合加工工艺优化[J].计算机集成制造系统,2011,17(7): 1460-1465.
WANG Xiao-jing, ZHANG Song, JIA Xiu-jie. Milling-turning processing optimization for aircraft engine casing[J]. Computer Integrated Manufacturing Systems, 2011, 17(7): 1460-1465.
[16]   张壮志,孔啸,梁建光,等.铝合金曲面薄壁件柔性工装夹具的加工性能研究[J].组合机床与自动化加工技术, 2013(6):116-118. doi:10.3969/j.issn.1001-2265.2013.06.034
ZHANG Zhuang-zhi, KONG Xiao, LIANG Jian-guang, et al. Research on processing performance of the flexible clamp system for aluminum alloy thin-walled work piece with curved surface[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2013(6): 116-118.
doi: 10.3969/j.issn.1001-2265.2013.06.034
[17]   杨毅青,龚继文.基于电磁感应原理的薄壁件铣削振动抑制[J].振动.测试与诊断,2015,35(3):429-433.
YANG Yi-qing, GONG Ji-wen. Milling vibration suppression of thin-walled structure based on electromagnetic induction[J]. Journal of Vibration, Measurement & Diagnosis, 2015, 35(3): 429-433.
[18]   SALLESE L, INNOCENTI G, GROSSI N, et al. Mitigation of chatter instabilities in milling using an active fixture with a novel control strategy[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(9/12): 2771-2787. doi: 10.1007/s00170-016-9831-6 .
doi: 10.1007/s00170-016-9831-6
[19]   MA J, ZHANG D, WU B, et al. Stability improvement and vibration suppression of the thin-walled workpiece in milling process via magnetorheological fluid flexible fixture[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(5/8): 1231-1242. doi:10.1007/s00170-016-8833-8
doi: 10.1007/s00170-016-8833-8
[20]   JIANG X, ZHAO G, LU W. Vibration suppression of complex thin-walled workpiece based on magnetorheological fixture[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(3/4): 1043-1055. doi:10.1007/s00170-019-04612-2
doi: 10.1007/s00170-019-04612-2
[21]   KOLLURU K, AXINTE D. Novel ancillary device for minimising machining vibrations in thin wall assemblies[J]. International Journal of Machine Tools and Manufacture, 2014, 85: 79-86. doi:10.1016/j.ijmachtools. 2014.05.007
doi: 10.1016/j.ijmachtools. 2014.05.007
[22]   许开州,詹世涛,刘子娟,等.大长径比薄壁燃烧室壳体铣削加工振动分析与控制[J].上海航天,2014,31 (1):10-14. doi:10.3969/j.issn.1006-1630.2014.z1.003
XU Kai-zhou, ZHAN Shi-tao, LIU Zi-juan, et al. Milling vibration analysis and control of a large length-diameter ratio and thin-walled combustor shell[J]. Aerospace Shanghai, 2014, 31 (1): 10-14.
doi: 10.3969/j.issn.1006-1630.2014.z1.003
[1] Di ZHAO,Guo CHEN,Xiaoli CHEN,Xiongjin WANG. Terrain adaptive mechanism design and obstacle-surmounting performance analysis of wheeled search and rescue robot[J]. Chin J Eng Design, 2023, 30(5): 579-589.
[2] Weijie DUAN,Huibin QIN,Rong LIU,Zhongyi LI,Shaoping BAI. Design and performance analysis of reconfigurable variable stiffness compliant actuator[J]. Chin J Eng Design, 2023, 30(2): 262-270.
[3] Fu-qiang ZHAO,Te DU,Bao-yu CHANG,Zhi-gang NIU. Dynamics analysis and experimental research on leg lifting condition of limb-leg crawler foot mechanism[J]. Chin J Eng Design, 2022, 29(4): 474-483.
[4] LIU Xiao-yu, TIAN Ying, ZHANG Ming-lu. Review of underwater manipulator dynamics research[J]. Chin J Eng Design, 2021, 28(4): 389-398.
[5] CAO En-guo, WANG Gang, WANG Kun, GAO Yang. Evaluation of walking aid effectiveness of exoskeleton driven by elastic device[J]. Chin J Eng Design, 2021, 28(4): 480-488.
[6] WEI Chun-yu, CAI Yue, LIU Ming-he, ZHANG Qi, JIA Qian-zhong. Design and simulation of new vibration isolation platform for vehicle medical rescue[J]. Chin J Eng Design, 2018, 25(5): 532-538.
[7] WANG Jie, QIAN Li-qin, CHEN Xin-long, SUN Qiao-lei, DENG Zi-qiang, FENG Ding. Dynamics model and analysis of the lifting system of automatic catwalk[J]. Chin J Eng Design, 2016, 23(5): 437-443,460.
[8] HU Shi-cheng, SONG Jing-jing, WANG Xiang-jun. Dynamics modeling and analysis on boom system of wet spraying machine[J]. Chin J Eng Design, 2014, 21(3): 227-234.