Please wait a minute...
Chinese Journal of Engineering Design  2016, Vol. 23 Issue (5): 437-443,460    DOI: 10.3785/j.issn.1006-754X.2016.05.006
    
Dynamics model and analysis of the lifting system of automatic catwalk
WANG Jie1,2, QIAN Li-qin1,2, CHEN Xin-long3, SUN Qiao-lei1,2, DENG Zi-qiang1,2, FENG Ding1,2
1. School of Mechanical Engineering, Yangtze University, Jingzhou 434023, China;
2. Oil and Gas Drilling and Well Completion Tools Research Center of Hubei Province, Jingzhou 434023, China;
3. SJ Petroleum Machinery Co., Sinopec Group, Jingzhou 434000, China
Download: HTML     PDF(1947KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

When the field test of rope pulled automatic catwalk was carried out, the load fluctuation of rope was obvious, and it was difficult to complete the lifting of the target weight column. Therefore, the structure and motion characteristics of rope pulled automatic catwalk were analyzed, and dynamic model based on the D'Alemebert principle was established, MATLAB software was used to analyze the influence of the distance between the block on the base and the bottom of the ramp, the hinge position of the transfer arm and the support arm, and the length of the support arm on the load of rope. The analysis results showed that adjusting the position of block on the base to the bottom of the ramp, and reducing the length of support arm could reduce the required force of rope in the process of lifting. According to the analysis results, the structure size of automatic catwalk was adjusted to carry out the field test, the test result showed that the maximum lifting oil pressure of the hydraulic which was decreased by more than 2 MPa, the lifting capacity of automatic catwalk was improved. The analysis and experimental results can guide the design and optimization of rope pulled automatic catwalk.



Key wordsrope pulled automatic catwalk      D'Alemebert's principle      dynamics model      structure optimization     
Received: 07 May 2016      Published: 28 October 2016
CLC:  TE242  
Cite this article:

WANG Jie, QIAN Li-qin, CHEN Xin-long, SUN Qiao-lei, DENG Zi-qiang, FENG Ding. Dynamics model and analysis of the lifting system of automatic catwalk. Chinese Journal of Engineering Design, 2016, 23(5): 437-443,460.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2016.05.006     OR     https://www.zjujournals.com/gcsjxb/Y2016/V23/I5/437


自动猫道起升系统动力学模型与分析

在对钢丝绳拉升式自动猫道进行现场试验时发现钢丝绳载荷波动明显,无法完成目标重量管柱的起升.为此,分析了钢丝绳拉升式自动猫道的结构与运动特性,并基于达朗贝尔原理建立了自动猫道的动力学模型,采用MATLAB软件进行数值求解并分析了基座上挡块与坡道底端的距离、移送臂与支撑臂的铰接位置、支撑臂长度对钢丝绳载荷的影响,分析得出将基座上挡块调整至坡道底端、合理降低支撑臂长度能有效降低起升过程所需钢丝绳拉力.依据分析结果调整自动猫道结构尺寸后进行现场试验,液压绞车的最大起升油压下降超过2 MPa,自动猫道机起升能力得到提高.该分析与实验结果可为钢丝绳拉升式自动猫道结构设计与优化提供指导.


关键词: 钢丝绳拉升式自动猫道,  达朗贝尔原理,  动力学模型,  结构优化 

[1] 于兴军,宋志刚,魏培静,等.国内石油钻机自动化技术现状与建议[J].石油机械,2014,42(11):25-29. YU Xing-jun, SONG Zhi-gang, WEI Pei-jing, et al. The technical status and recommendations on the domestic drilling rig automation[J].China Petroleum Machinery,2014,42(11):25-29.
[2] 赵淑兰,李文彪,聂永晋,等.动力猫道技术国内外现状和发展趋势[J].石油矿场机械,2010,39(2):13-15. ZHANG Shu-lan, LI Wen-biao, NIE Yong-jin, et al. Technology and developing trend of power catway at home and abroad[J]. Oil Field Equipment, 2010,39(2):13-15.
[3] 刘强.石油钻机自动化猫道的研究与设计[D].大庆:东北石油大学机械科学与工程学院,2013:2-3. LIU Qiang. Research and design on automatic catwalk of oil drilling rig[D].Daqing: Northeast Petroleum University,School of Mechanical Science and Engineering, 2013:2-3.
[4] 高建强.全液压自动猫道提升系统研究[D].长春:吉林大学机械科学与工程学院,2014:3-6. GAO Jian-qiang. Research on hoisting system of hydraulic automatic catwalk[D]. Changchun: Jilin University,School of Mechanical Science and Engineering, 2014:3-6.
[5] 万晓鹏.自动排管机系统动力学分析与研究[D].长春:吉林大学机械科学与工程学院,2014:6-7. WAN Xiao-peng. Dynamics analysis and research of automatic pipe handing system[D]. Changchun: Jilin University,School of Mechanical Science and Engineering, 2014:6-7.
[6] 张春鹏.全液压自动猫道举升系统研究[D].长春:吉林大学机械科学与工程学院,2014:8-9. ZHANG Chun-peng. Study on lifting system of full hydraulic automatic catwalk[D].Changchun: Jilin University,School of Mechanical Science and Engineering, 2014:8-9.
[7] 何鸿.钻井平台钻杆自动化排放系统方案设计[J].石油矿场机械,2012,9(41):82-84. HE Hong. Scheme design of automatic discharge pipe system of drilling platform[J].Oil Field Equipment, 2012,9(41):82-84.
[8] 郑元庆,江正清,裴俊峰,等.猫道机液压系统的可靠性分析[J].机床与液压,2014,42(19):199-203. ZHENG Yuan-qing, JIANG Zheng-qing, PEI Jun-feng, et al. Reliability evaluation of catwalk hydraulic system[J]. Machine Tool & Hydraulics, 2014,42(19):199-203.
[9] 崔学政,刘全平,肖文生,等.海洋钻井平台自动化猫道设计[J].石油矿场机械,2011,40(2):20-23. CHUI Xue-zheng, LIU Quan-ping, XIAO Wen-sheng, et al. Design of automated catwalk-machine for offshore drilling platform[J]. Oil Field Equipment,2011,40(2):20-23.
[10] 谭志松,于萍,张春鹏,等.全液压自动猫道举升系统运动学分析[J].石油矿场机械,2015,44(7):24-27. TAN Zhi-song, YU Ping, ZHANG Chun-peng, et al. Kinematics analysis of lifting system of full hydraulic automatic catwalk[J]. Oil Field Equipment, 2015,44(7):24-27.
[11] 李艳娇,于萍,高建强,等.新型自动猫道提升系统动力学分析[J].石油矿场机械,2015,44(5):1-5. LI Yan-jiao, YU Ping, GAO Jian-qiang, et al. Dynamic analysis of hoisting system of the new automatic catwalk[J]. Oil Field Equipment, 2015,44(5):1-5.
[12] 任得勇,刘雁蜀,王元忠,等.自动猫道机起升钢丝绳受力特性研究[J].机械研究与应用,2014,27(4):54-57. REN De-yong, LIU Yan-shu, WANG Yuan-zhong, et al. Research on the mechanical properties of automatic catwalk hoisting wire rope[J].Mechanical Research & Application, 2014,27(4):54-57.
[13] 哈尔滨工业大学理论力学教研室.理论力学[M].6版.北京:高等教育出版社,2002: 216-220. Theoretical Mechanics Department of Harbin Institute of Technology. Theoretical mechanics[M].6th ed. Beijing: Higher Education Press, 2002:216-220.
[14] 谢帆,荆建平,万召,等.基于有限差分法的径向滑动轴承油膜压力分布计算[J].润滑与密封,2012,37(2):12-15. XIE Fan, JING Jian-ping, WAN Zhao, et al. Calculation of oil film pressure distribution of journal bearing based on finite difference method[J]. Lubrication Engineering, 2012,37(2): 12-15.
[15] 马良栋,李增耀,陶文铨.高精度有限差分在湍流直接数值模拟中的应用[J].工程热物理学报,2007,5(28):859-961. MA Liang-dong, LI Zeng-yao, TAO Wen-quan. The application of high resolution finite difference scheme in numerical simulation of turbulent[J].Journal of Engineering Thermophysics, 2007,5(28):859-961.
[16] 田亚平,王小荣.平面铰链五杆机构的Matlab动力学求解[J].机械研究与应用,2009(5):26-29. TIAN Ya-ping, WANG Xiao-rong. A dynamic solution for a planar linkage five-bar mechanism with Matlab[J].Machine Research & Application, 2009(5): 26-29.
[17] 张德丰,杨文茵.MATLAB仿真技术与应用[M].北京:机械工业出版社,2002:73-76. ZHANG De-feng, YANG Wen-yin. MATLAB simulation technology and application[M]. Beijing: China Machine Press, 2002:73-76.
[18] 孙恒,陈作模,葛文杰.机械原理[M].北京:高等教育出版社,2006:69-73. SUN Heng, CHEN Zuo-mo, GE Wen-jie. Mechanical principles[M].Beijing: Higher Education press, 2006:69-73.

[1] Fu-qiang ZHAO,Te DU,Bao-yu CHANG,Zhi-gang NIU. Dynamics analysis and experimental research on leg lifting condition of limb-leg crawler foot mechanism[J]. Chinese Journal of Engineering Design, 2022, 29(4): 474-483.
[2] Chun-yan ZHANG,Bing DING,Zhi-qiang HE,Jie YANG. Kinematics analysis and optimization of rotary multi-legged bionic robot[J]. Chinese Journal of Engineering Design, 2022, 29(3): 327-338.
[3] LIU Xiao-yu, TIAN Ying, ZHANG Ming-lu. Review of underwater manipulator dynamics research[J]. Chinese Journal of Engineering Design, 2021, 28(4): 389-398.
[4] CAO En-guo, WANG Gang, WANG Kun, GAO Yang. Evaluation of walking aid effectiveness of exoskeleton driven by elastic device[J]. Chinese Journal of Engineering Design, 2021, 28(4): 480-488.
[5] ZHANG Yuan, PENG Zhen-hua, GAO Ding-xiang, REN Hai-tao, TANG Yi-xin. Design and mixing performance research of core tube heavy oil mixing and diluting mixer[J]. Chinese Journal of Engineering Design, 2018, 25(5): 510-517.
[6] WEI Chun-yu, CAI Yue, LIU Ming-he, ZHANG Qi, JIA Qian-zhong. Design and simulation of new vibration isolation platform for vehicle medical rescue[J]. Chinese Journal of Engineering Design, 2018, 25(5): 532-538.
[7] LIU Zhe, TAO Feng-he, JIA Chang-zhi. Fatigue life prediction on drive shaft of tracked vehicle and structure optimization[J]. Chinese Journal of Engineering Design, 2015, 22(5): 431-437.
[8] HU Shi-cheng, SONG Jing-jing, WANG Xiang-jun. Dynamics modeling and analysis on boom system of wet spraying machine[J]. Chinese Journal of Engineering Design, 2014, 21(3): 227-234.
[9] TONG Shui-Guang, CAI Qin, YUAN Ming-Hong, ZHANG Jian. Stress test and structure optimization of dynamic compactor boom[J]. Chinese Journal of Engineering Design, 2013, 20(2): 126-130.
[10] WANG Guo-Li, HUANG Xiao-Hai, LIU Shu-Hui, LI Qing-Wei. Fatigue simulation and structure optimization of suspension stabilizer link bracket[J]. Chinese Journal of Engineering Design, 2013, 20(1): 18-21.
[11] TAN Qi-Yan, GAO Yun-Guo, WANG Xiao-Qing, XUE Xiang-Yao. Dynamic analysis and optimization of inner supporting structure for laser emission turntable[J]. Chinese Journal of Engineering Design, 2010, 17(3): 186-189.
[12] CAO Heng, HE Cheng-Kun, MENG Xian-Wei, LING Zheng-Yang. Structure optimization analysis for exoskeleton foot[J]. Chinese Journal of Engineering Design, 2010, 17(1): 35-39.
[13] LI Chun-Sheng, DU Yu-Mei, XIA Ping-Chou, YAN Lu-Guang. Structure optimization of PM Halbach array for EDS maglev[J]. Chinese Journal of Engineering Design, 2007, 14(4): 334-337.
[14] ZHOU Dao, MENG Qing-Xin, SUN Zhi-Juan. Structure optimization of clamping claw in half-burying torpedo instrument[J]. Chinese Journal of Engineering Design, 2006, 13(6): 435-439.