Please wait a minute...
Chinese Journal of Engineering Design  2016, Vol. 23 Issue (5): 431-436    DOI: 10.3785/j.issn.1006-754X.2016.05.005
    
The friction modeling and feed-forward compensation based on differential evolution algorithm
HU Jing-jing1, LI Guo-yong1, ZHANG Yan-long2
1. College of Information Engineering, Taiyuan University of Technology, Taiyuan 030024, China;
2. School of Mechanical and Power Engineering, North University of China, Taiyuan 030051, China
Download: HTML     PDF(1477KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Friction which reduces the tracking precision is a kind of external perturbation when the linear motor is running. The design of feed-forward compensator based on friction model is an important means to realize friction inhibition. Firstly, the characteristics of the friction was analyzed and the appropriate friction model was choosen. Secondly, speed feed-forward controller and acceleration feed-forward controller were designed to improve the tracking performance of the machine. With measured friction values of the motor under different speeds, the friction model parameters were identified through differential evolution algorithm, and the feed-forward controller was designed to achieve the friction suppression of the permanent magnet synchronous linear motor. Simulation results showed that the friction model accurately described the characteristics of the tested linear motor, and the designed feed-forward controller based on the friction model which identified by this algorithm effectively eliminated the speed stick-slip phenomenon caused by friction and reduced the location tracking error.



Key wordslinear motor      friction feed-forward compensation      velocity feed-forward      acceleration feed-forward      differential evolution algorithm     
Received: 26 February 2016      Published: 28 October 2016
CLC:  TP273  
Cite this article:

HU Jing-jing, LI Guo-yong, ZHANG Yan-long. The friction modeling and feed-forward compensation based on differential evolution algorithm. Chinese Journal of Engineering Design, 2016, 23(5): 431-436.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2016.05.005     OR     https://www.zjujournals.com/gcsjxb/Y2016/V23/I5/431


基于差分进化算法的摩擦力建模与前馈补偿

摩擦力是电机运行时受到的外部扰动,会降低直线电机的跟踪精度.根据摩擦模型设计前馈补偿器是降低摩擦影响的重要方法.首先分析摩擦特性,选用合适的摩擦模型.其次设计电机速度前馈控制器和加速度前馈控制器,提高电机的跟踪性能.根据测得的电机在不同速度下的摩擦力值,运用差分进化算法辨识直线电机的摩擦模型参数,以此设计前馈控制器,实现永磁同步直线电机的摩擦抑制.仿真结果表明,摩擦模型能准确描述被测直线电机的摩擦特性,基于摩擦模型辨识结果设计出的摩擦前馈控制器可以有效地消除摩擦力引起的速度粘滑现象并且减小电机的位置跟踪误差.


关键词: 直线电机,  摩擦前馈补偿,  速度前馈,  加速度前馈,  差分进化算法 

[1] ARMSTRONG-HELOUVRY B, DUPONT P, DE-WIT C C. A survey of models, analysis tools and compensation methods for the control of machines with friction[J]. Automatica, 1994, 30(7): 1083-1138.
[2] 向红标,王收军,张春秋,等.Stribeck模型自适应滑模摩擦补偿控制[J].中国测试,2015,41(9):92-95. XIANG Hong-biao, WANG Shou-jun, ZHANG Chun-qiu, et al. Adaptive sliding friction compensation based on Stribeck model[J]. China Measurement & Test, 2015, 41(9): 92-95.
[3] LEE T H, TAN K K, HUANG S. Adaptive friction compensation with a dynamical friction model[J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(1): 133-140.
[4] LI Z, CHEN J, ZHANG G, et al. Adaptive robust control of servo mechanisms with compensation for nonlinearly parameterized dynamic friction[J]. IEEE Transactions on Control Systems Technology, 2013, 21(1): 194-202.
[5] 路瑶,何秋生,苑伟华.考虑摩擦伺服系统的补偿算法研究[J].微特电机,2015,43(7):71-74. LU Yao, HE Qiu-sheng,YUAN Wei-hua. Research on compensation algorithm for servo system with friction[J]. Small & Special Electrical Machines, 2015, 43(7): 71-74.
[6] XIA D, CHAI T, WANG L. Fuzzy neural-network friction compensation-based singularity avoidance energy swing-up to nonequilibrium unstable position control of pendubot[J]. IEEE Transactions on Control Systems Technology, 2014, 22(2): 690-705.
[7] 王丽梅,李兵.基于摩擦观测器的直接驱动XY平台轮廓控制器设计[J].电机与控制学报,2013,17(1): 31-36. WANG Li-mei, LI Bing. Contour control design for direct drive XY table based on friction observer[J]. Electric Machines and Control, 2013, 17(1): 31-36.
[8] 潘晴,黄明辉,李毅波.大型液压机驱动系统摩擦补偿控制[J].机械科学与技术,2015,34(2):204-208. PAN Qing, HUANG Ming-hui, LI Yi-bo. The friction compensation for giant hydraulic press[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(2): 204-208.
[9] PIATKOWSKI T. Dahl and LuGre dynamic friction models: the analysis of selected properties[J]. Mechanism and Machine Theory, 2014, 73(7): 91-100.
[10] 李鹏勃, 赵飞, 梅雪松, 等. 基于进给系统反馈信号的摩擦辨识方法[J]. 组合机床与自动化加工技术, 2012(11): 4-7. LI Peng-bo, ZHAO Fei, MEI Xue-song, et al. A friction identification method based on feedback signals of servo feed system[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2012(11): 4-7.
[11] 胡超杰.差分进化算法及其在电机参数辨识中的应用研究[D].长沙:湖南大学电气与信息工程学院,2013: 1-54. HU Chao-jie. The research on differential evolution algorithm and its application in motor parameter identification[D]. Changsha: Hunan University, College of Electrical and Information Engineering,2013: 1-54.
[12] 吴亮红.差分进化算法及应用研究[D].长沙:湖南大学电气与信息工程学院,2007:1-96. WU Liang-hong. The research on differential evolution algorithm and its application[D]. Changsha: Hunan University, College of Electrical and Information Engineering,2007: 1-96.
[13] 刘柏希,姚昊雄,聂松辉.基于区间分析的LuGre摩擦模型参数辨识方法[J].中国机械工程,2013,24(19):2647-2652. LIU Bai-xi, YAO Hao-xiong, NIE Song-hui. Parameter identification of LuGre friction model based on interval analysis[J]. China Mechanical Engineering, 2013, 24(19): 2647-2652.
[14] YANADA H, SEKIKAWA Y. Modeling of dynamic behaviors of friction[J]. Mechatronics, 2008, 18(7): 330-339.
[15] ALONGE F, DIPPOLITO F, RAIMONDI F. Least squares and genetic algorithms for parameter identification of induction motors[J]. Control Engineering Practice, 2001, 9(6): 647-657.
[16] 刘强,扈宏杰,刘金琨,等.基于遗传算法的伺服系统摩擦参数辨识研究[J].系统工程与电子技术,2003,25(1):77-79. LIU Qiang, HU Hong-jie, LIU Jin-kun, et al. Research on parameter identification of friction model for servo systems based on genetic algorithms[J]. Systems Engineering and Electronics, 2003, 25(1): 77-79.
[17] 周林,彭程,梁青,等.直流伺服系统静态摩擦的最小二乘辨识[J].电子技术,2012(10): 31-33. ZHOU Lin, PENG Cheng, LIANG Qing, et al. The least square identification of static friction in servo system[J]. Electronics Technology, 2012(10): 31-33.
[18] GLUCL T, KEMMETMULLER W, TUMP C, et al. A novel robust position estimator for self-sensing magnetic levitation systems based on least squares identification[J]. Control Engineering Practice, 2011, 19(2): 146-157.

[1] WANG Yao, LI Shu-jun, ZHAO Wen-yu, MENG Wen-jun. Experimental and theoretical analysis of static and dynamic characteristic of linear motor used in belt conveyor[J]. Chinese Journal of Engineering Design, 2017, 24(3): 303-310.
[2] LU Qing-Bo, ZHANG Xue-Liang, WEN Shu-Hua, LAN Guo-Sheng, LIU Li-Qin. Research on differential evolution algorithm based on Gauss mutation and its application[J]. Chinese Journal of Engineering Design, 2012, 19(5): 372-378.
[3] ZHANG Bing-Wei, MA Xiao-Ming. Optimization design of parameters in feeding system driven by linear motor based on APDL[J]. Chinese Journal of Engineering Design, 2005, 12(2): 93-96.