Please wait a minute...
Chinese Journal of Engineering Design  2016, Vol. 23 Issue (3): 251-255,270    DOI: 10.3785/j.issn. 1006-754X.2016.03.009
Modeling, Analysis, Optimization and Decision     
Topology optimization design for the 3-RPRR similarly planar fully compliant parallel mechanism
CHEN Jian-wei, ZHU Da-chang, ZHANG Rong-xing, ZHU Cheng-wei
School of Mechanical & Electrical Engineering, Jiangxi University of Science & Technology, Ganzhou 341000, China
Download: HTML     PDF(4043KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The configuration design of fully compliant parallel mechanism can't meet the demand of precision positioning and micro/nano manufacturing. In order to improve the overall stiffness, vibration resistance and interference immunity of the fully compliant parallel mechanism, a 3-RPRR similarly planar fully compliant parallel mechanism which had the same space motion characteristics to the prototype and its branched chains were designed by using type comprehensive method and based on the 3-RPRR prototype parallel mechanism. The optimal configuration of 3-RPRR similarly planar fully compliant parallel mechanism and its branched chains with topology optimization method were obtained. Then two models were respectively established by adopting Hyperworks/Radioss software, statics and modal analysis were carried out. The results showed that the optimized mechanism not only saved material, but also had better overall stiffness, vibration resistance and interference immunity under the premise of achieving the same motion characteristics.



Key wordssimilarly planar      fully compliant parallel mechanism      topology optimization      statics analysis      modal analysis     
Received: 02 December 2015      Published: 28 June 2016
CLC:  TH112  
Cite this article:

CHEN Jian-wei, ZHU Da-chang, ZHANG Rong-xing, ZHU Cheng-wei. Topology optimization design for the 3-RPRR similarly planar fully compliant parallel mechanism. Chinese Journal of Engineering Design, 2016, 23(3): 251-255,270.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn. 1006-754X.2016.03.009     OR     https://www.zjujournals.com/gcsjxb/Y2016/V23/I3/251


3-RPRR类平面全柔性并联机构拓扑优化设计

针对全柔性并联机构的构型设计不能满足精密定位和微纳制造领域的需求,为提高全柔性并联机构的整体刚度、抗振性和抗干扰性,基于3-RPRR并联机构原型,采用型综合法,设计出与并联机构原型空间运动特性一致的3-RPRR类平面全柔性机构及其支链.运用拓扑优化的方法,得到铰链最优配置的3-RPRR类平面全柔性并联机构及其支链.采用Hyperworks/Radioss软件分别对这2种3-RPRR类平面全柔性并联机构进行静力学及模态分析,仿真结果表明:在实现相同运动特性的前提下,优化后的3-RPRR类平面全柔性并联机构不仅节省材料,而且在刚度、抗振性和抗干扰性方面更优.


关键词: 类平面,  全柔性并联机构,  拓扑优化,  静力学分析,  模态分析 
[1] 国家自然科学基金委员会工程与材料科学部.机械工程学科发展战略报告(2011—2020)[M].北京:科学出版社,2010:10-16. National Natural Science Foundation of Engineering and Materials Science Department.Report on development strategy of mechanical engineering discipline (2011—2020)[M].Beijing:Science Press,2010:10-16.

[2] 于靖军,宗光华,毕树生.全柔性机器人机构的结构构型研究[J].机器人,2003,25(4):367-372. YU Jing-jun,ZONG Guang-hua,BI Shu-sheng.Fully compliant robotic mechanisms and their configurations[J].Robot,2003,25(4):367-372.

[3] 王硕.3-RPR柔性并联微位移机构的设计与分析[D].北京:北京交通大学机械与电子控制工程学院,2007:19-25. WANG Shuo.Design and analysis of 3-RPR flexible parallel micro-displacement mechanism[D].Beijing:Beijing Jiaotong University,School of Mechanical,Electronic and Control Engineering,2007:19-25.

[4] 杨启志,马履中,郭宗和,等.全柔性并联机器人支链静刚度矩阵的建立[J].中国机械工程,2008,19(10):1156-1159. YANG Qi-zhi,MA Lü-zhong,GUO Zong-he,et al.Establishing the static stiffness matrix of compliant chain for a fully compliant parallel robot using D-H transformation method[J].China Mechanical Engineering,2008,19(10):1156-1159.

[5] HOWELL L L.Complaint mechanisms[M].New York:Wiley Interscience,2001:1-47.

[6] BENDSOE M P,SIGMUND O.Topology optimization[M]. Germany:Springer,2004:56-82.

[7] CHARLES J Kim.A conceptual approach to the computa-tional synthesis of compliant mechanisms[D].Michigan:University of Michigan,School of Engineering,2005:113-132.

[8] 李守忠,于靖军,宗光华.基于旋量理论的并联柔性机构构型综合与主自由度分析[J].机械工程学报,2010,46(13):54-60.

LI Shou-zhong,YU Jing-jun,ZONG Guang-hua.Type synthesis and principal freedom analysis of parallel flexure mechanisms based on screw theory[J].Journal of Mechanical Engineering,2010,46(13):54-60.

[9] BOUDEWIJN R,DANNIS M B,MEINT J,et al.Design and fabrication of a planar three-DOFs manipulator[J].Journal of Microelectromechanical Systems,2010,19(5):1116-1130.

[10] 刘庆玲.柔性对称微位移放大机构性能分析方法的研究[J].工程设计学报,2013,20(4):345-347.

LIU Qing-ling.Study on the performance analysis methods of the compliant symmetric micro-displacement magnifying mechanism[J].Chinese Journal of Engineering Design,2013,20(4):345-347.

[11] 朱春霞.基于有限元的3-TPT并联机床结构特性研究[D].沈阳:东北大学机械工程与自动化学院,2006:44-58.

ZHU Chun-xia.Research on 3-TPT parallel machine tool structural characteristics based on finite element analysis[D].Shenyang:Northeastern University,School of Mechanical Engineering and Automation,2006.
[1] Jing-liang WANG,Tian-cheng ZHU,Long-biao ZHU,Fei-yun XU. Research on variable density topology optimization method for continuum structure[J]. Chinese Journal of Engineering Design, 2022, 29(3): 279-285.
[2] XIE Miao, ZHANG Bao-guo, WANG Peng-fei, LI Zheng. Research on active excitation cutting performance of roadheader based on similarity theory[J]. Chinese Journal of Engineering Design, 2021, 28(5): 576-584.
[3] ZHANG Hu-zhi, MA Zhe-lin, HUANG Hai-lin, JIN Hao, PENG Wei. Topology optimization for reinforced concrete deep beam with different displacement boundaries[J]. Chinese Journal of Engineering Design, 2019, 26(6): 691-699.
[4] LI Xiang, WANG Yang, TONG Guan, CHEN Bo-wen, HE Bin. Study on vibration characteristics of new quasi-square honeycomb sandwich structure with all edges simply supported[J]. Chinese Journal of Engineering Design, 2018, 25(6): 725-734.
[5] ZHANG Ri-cheng, ZHAO Jiong, WU Qing-long, XIONG Xiao-lei, ZHOU Qi-cai, JIAO Hong-yu. Variable density topology optimization method considering structural stability[J]. Chinese Journal of Engineering Design, 2018, 25(4): 441-449.
[6] DU Yi-xian, LI Rong, XU Ming, TIAN Qi-hua, ZHOU Xiang-man. Topology optimization design for negative Poisson's ratio microstructure[J]. Chinese Journal of Engineering Design, 2018, 25(4): 450-456.
[7] TANG Hua-ping, ZENG Li, WANG Sheng-ze, CHEN Hao-sen. Design of roll-over protective structure for heavy mining dumper based on topology optimization[J]. Chinese Journal of Engineering Design, 2018, 25(3): 295-301.
[8] HUANG Zhi-qiang, LI Gang, TAO Zhi-fei, HAO Lei. Finite element modal analysis and experimental verification of vibroseis vibrator[J]. Chinese Journal of Engineering Design, 2017, 24(5): 530-535.
[9] QIU Rui-bin, LEI Fei, CHEN Yuan, WANG Qiong. Research on the method of multi-case topology optimization of frame structure based on the weight ratio[J]. Chinese Journal of Engineering Design, 2016, 23(5): 444-452.
[10] MAO Jun, DONG Xian-rui, XIE Miao, YAN Jiang-long, LI Cui. Modal analysis of frame on intelligent stereo parking space[J]. Chinese Journal of Engineering Design, 2016, 23(1): 54-59,81.
[11] XIE Yan-min, HE Yu-jun, ZHUO De-zhi, XIONG Wen-cheng. Topology optimization of hot stamping die structure on high-strength sheet metal for U shaped part[J]. Chinese Journal of Engineering Design, 2016, 23(1): 60-66.
[12] SUN Kai, BO Rui-feng, LU Jian-peng, LI Rui-qin. Multi-objective topology optimization of design compliant mechanisms based on global strain[J]. Chinese Journal of Engineering Design, 2015, 22(6): 575-580.
[13] XIE Miao, BAI Ya-jing, MAO Jun, DONG Xian-rui, LU Jin-nan. Modal analysis of supporting in advance equipment under different working conditions[J]. Chinese Journal of Engineering Design, 2015, 22(3): 236-242.
[14] TIAN Qi-hua, WANG Jin-xue, DU Yi-xian, WANG Tao. Three-dimensional continuum topology optimization based on density-sensitivity level update policy[J]. Chinese Journal of Engineering Design, 2015, 22(2): 155-160.
[15] LI Wen-jun, ZHOU Qi-cai, WU Qing-long, XIONG Xiao-lei. Stability-ensured topology optimization of geometrically nonlinear boom structures[J]. Chinese Journal of Engineering Design, 2014, 21(5): 449-455.