Please wait a minute...
Chinese Journal of Engineering Design  2025, Vol. 32 Issue (6): 789-802    DOI: 10.3785/j.issn.1006-754X.2025.05.143
Robotic and Mechanism Design     
Research on path planning method based on dynamic fusion of ant colony optimization and genetic algorithm
Jianbo CHE1(),Donglin TANG1(),Yuanyuan HE1,2,Yuanyao HU1,Bingsheng LU1,Junhui ZHANG1
1.School of Mechanical and Electrical Engineering, Southwest Petroleum University, Chengdu 610500, China
2.Sichuan Special Equipment Inspection Institute, Chengdu 610000, China
Download: HTML     PDF(4727KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The traditional path planning algorithms that combine ant colony optimization (ACO) and genetic algorithm (GA) commonly suffer from unsmooth paths, slow convergence speed and high energy consumption. To address these issues, a path planning method based on dynamic fusion of ACO and GA (DACO-GA) is proposed to improve the efficiency and accuracy of path planning. In the initial stage, ACO was used to generate the initial population, and GA was introduced for optimization and adjustment. In later stages, the leading role of the two algorithms was dynamically switched, enabling coordinated complementarity between global and local search. The algorithm integrated adaptive pheromone distribution, dynamic evaporation factors and adaptive crossover/mutation probability adjustment mechanisms, which effectively enhanced search capability and mitigate the tendency to fall into local optima. Finally, optimization experiments were conducted on the key control parameters of the DACO-GA to validate the effectiveness of each improvement mechanism. The DACO-GA was compared with traditional algorithms across multiple typical scenarios to further evaluate its adaptability in complex environments. The results showed that the proposed algorithm could generate smoother and shorter paths, demonstrating strong global optimization ability and faster convergence speed. The DACO-GA not only provides an effective solution for complex path planning problems, but also offers technical references for the optimization in areas such as multi-agent cooperation and robot navigation.



Key wordspath planning      dynamic fusion      ant colony optimization      genetic algorithm     
Received: 09 June 2025      Published: 30 December 2025
CLC:  TP 242.2  
Corresponding Authors: Donglin TANG     E-mail: 13540786343@163.com;tdl840451816@163.com
Cite this article:

Jianbo CHE,Donglin TANG,Yuanyuan HE,Yuanyao HU,Bingsheng LU,Junhui ZHANG. Research on path planning method based on dynamic fusion of ant colony optimization and genetic algorithm. Chinese Journal of Engineering Design, 2025, 32(6): 789-802.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2025.05.143     OR     https://www.zjujournals.com/gcsjxb/Y2025/V32/I6/789


动态融合蚁群算法与遗传算法的路径规划方法研究

结合蚁群算法(ant colony optimization, ACO)与遗传算法(genetic algorithm, GA)的传统路径规划方法普遍存在路径不平滑、收敛速度慢及能耗较高等问题。为解决上述问题,提出了一种动态融合ACO与GA(dynamic fusion of ACO and GA, DACO-GA)的路径规划方法,以提升路径规划的效率与精度。该方法初期采用ACO生成初始种群,并引入GA进行优化调整;在后续阶段,通过动态切换2种算法的主导角色,实现全局与局部搜索的协调互补。算法设计中融合了自适应信息素分布、动态挥发因子及自适应交叉/变异概率调节机制,有效提升了搜索能力并缓解了局部最优问题。最后,围绕DACO-GA中的关键控制参数开展优化实验,以验证各改进机制的有效性。在多个典型场景下将DACO-GA与传统算法进行对比,以进一步评估其在复杂环境下的适应性。结果表明,所提出的算法可生成更平滑且长度更短的路径,展现出良好的全局优化能力以及较快的收敛速度。DACO-GA不仅为复杂路径规划问题提供了有效的解决方案,还可为多智能体协作、机器人导航等领域的优化提供技术参考。


关键词: 路径规划,  动态融合,  蚁群算法,  遗传算法 
Fig.1 Raster map
Fig.2 Schematic of movable direction of raster
Fig.3 Adaptive initial pheromone distribution
Fig.4 Variation curve of dynamic volatilization factor
Fig.5 Variation curves of adaptive crossover probability and mutation probability
Fig.6 Principle of deletion algorithm
Fig.7 Path planning result before using deletion algorithm
Fig.8 Path planning result after using deletion algorithm
Fig.9 DACO-GA algorithm flow
Fig.10 Raster map for parameter optimization
算法ACO阶段GA阶段融合阶段
TAmαβγτ0ρminρmaxTGPc,?maxPm,?maxKcKmTCH

多样性

阈值

改进幅度阈值
IACO-11050620~110.10.3
IGA-1100.80.20~10.8
IGA-2100.80.20.90~1
DACO-GA1050620.510.10.3100.80.20.90.8800~10.01
Table 1 Parameter values of DACO-GA
Fig.11 Influence of DACO-GA parameters on path planning performance
Fig.12 Comparison of optimal paths based on DACO-GA and MsAACO
Fig.13 Raster map for improving mechanism comparison
Fig.14 Comparison of optimal paths based on ACO, IACO-1 and IACO-2
Fig.15 Comparison of iterative curves of ACO, IACO-1 and IACO-2
性能指标ACOIACO-1IACO-2
最优路径长度51.11346.87046.284
平均路径长度55.27550.15449.384
最优路径转弯次数22119
收敛次数584842
Table 2 Comparison of path planning performance of ACO, IACO-1 and IACO-2
Fig.16 Comparison of optimal paths based on GA,IGA-1 and IGA-2
Fig.17 Comparison of iterative curves of GA, IGA-1 and IGA-2
性能指标GAIGA-1IGA-2
最优路径长度53.21349.35547.113
平均路径长度56.43252.48350.801
最优路径转弯次数201922
收敛次数744238
Table 3 Comparison of path planning performance of GA, IGA-1 and IGA-2
Fig.18 Comparison of optimal paths based on ACO-GA, MACOGA and DACO-GA
Fig.19 Comparison of iterative curves of ACO-GA, MACOGA and DACO-GA
性能指标ACO-GAMACOGADACO-GA
最优路径长度45.11343.72441.834
平均路径长度49.94145.09447.895
最优路径转弯次数91110
收敛次数403230
Table 4 Comparison of path planning performance of ACO-GA, MACOGA and DACO-GA
地图编号特征设计目标
1矩形障碍物布置评估算法在规则障碍物布局下的全局搜索能力、路径规划和转弯控制能力
2固定通道障碍物布置测试算法在狭窄通道和复杂障碍物布局下的局部搜索能力和避障性能
3U形障碍物布置考察算法在U形障碍物环境中的路径规划和转弯控制能力
4阶梯形障碍物布置评估算法在阶梯形障碍物环境中的适应性和路径规划能力
Table 5 Characteristics of different raster maps
Fig.20 Comparison of optimal paths based on various algorithms in different environments
性能指标算法仿真地图
1234
路径长度Dijkstra32.14232.72334.04231.556
A*30.38531.55632.14230.971
PSO29.79930.38531.97128.627
DACO-GA28.64129.59430.02727.800
转弯次数Dijkstra66105
A*7966
PSO7768
DACO-GA4332
总转弯角度/(°)Dijkstra270.000270.000540.000225.000
A*315.000450.000270.000315.000
PSO315.000315.000315.000360.000
DACO-GA137.361137.064143.97326.565
平滑度Dijkstra0.1750.1750.0960.203
A*0.1530.1130.1750.154
PSO0.1530.1540.1540.137
DACO-GA0.2940.2950.2850.683
Table 6 Comparison of path planning performance of various algorithms in different environments
Fig.21 Comparison of optimal paths based on DACO-GA and JPSG algorithms
障碍物类型算法最优路径长度平均路径长度

最优路径

转弯次数

最优路径转弯角度/(°)

最优路径

平滑度

收敛次数
动态障碍物JPSG45.69947.75694050.12448
DACO-GA44.75747.21483350.14641
静态障碍物JPSG46.87047.981114950.10445
DACO-GA43.35545.20883600.13837
Table 7 Comparison of path planning performance of DACO-GA and JPSG algorithms
 
[[1]]   崔衡, 马宗方, 宋琳, 等. 基于连续顶点分区的混凝土3D打印路径规划算法[J]. 工程设计学报, 2024, 31(3): 271-279.
CUI H, MA Z F, SONG L, et al. Path planning algorithm for concrete 3D printing based on continuous vertex partitioning[J]. Chinese Journal of Engineering Design, 2024, 31(3): 271-279.
[[2]]   WONGPIROMSARN T, KALLMANN M, KOLLING A. Locally homotopic paths: ensuring consistent paths in hierarchical path planning[J]. IEEE Robotics and Automation Letters, 2024, 9(9): 7565-7572.
[[3]]   巩慧, 倪翠, 王朋, 等. 基于Dijkstra算法的平滑路径规划方法[J]. 北京航空航天大学学报, 2024, 50(2): 535-541.
GONG H, NI C, WANG P, et al. A smooth path planning method based on Dijkstra algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(2): 535-541.
[[4]]   LI Y C, DONG X Z, DING Q Q, et al. Improved A-STAR algorithm for power line inspection UAV path planning[J]. Energies, 2024, 17(21): 5364.
[[5]]   冯垚, 周志峰, 沈亦纯, 等. 基于改进RRT算法的避障路径规划[J]. 工程设计学报, 2023, 30(6): 707-716.
FENG Y, ZHOU Z F, SHEN Y C, et al. Obstacle avoidance path planning based on improved RRT algorithm[J]. Chinese Journal of Engineering Design, 2023, 30(6): 707-716.
[[6]]   赵红专, 张鑫, 张蓓聆, 等. 基于改进人工势场的智能车动态安全椭圆路径规划方法[J]. 山东大学学报(工学版), 2025, 55(3): 46-57.
ZHAO H Z, ZHANG X, ZHANG B L, et al. A dynamic safe elliptical path planning method for intelligent vehicles based on improved artificial potential field[J]. Journal of Shandong University (Engineering Science), 2025, 55(3): 46-57.
[[7]]   TANG X J, LI Y L. Research on path planning of self-driving vehicles based on improved DWA algorithm[J]. Applied Mathematics and Nonlinear Sciences, 2024, 9(1): 20231664.
[[8]]   LIU H B, ZHANG S, YANG X D. Overview of path planning algorithms[J]. Recent Patents on Engineering, 2024, 18(7): 76-89.
[[9]]   GU G Q, LI H T, ZHAO C S. A multi-strategy enhanced marine predator algorithm for global optimization and UAV swarm path planning[J]. IEEE Access, 2024, 12: 112095-112115.
[[10]]   ZHOU Q, LIAN Y, WU J Y, et al. An optimized Q-Learning algorithm for mobile robot local path planning[J]. Knowledge-Based Systems, 2024, 286: 111400.
[[11]]   WANG F, ZHAO L, BAI Y. Path planning for unmanned surface vehicles based on modified artificial fish swarm algorithm with local optimizer[J]. Mathematical Problems in Engineering, 2022, 2022(1): 1283374.
[[12]]   王芸. 基于模拟退火算法的末端车载无人机物流配送路径规划研究[J]. 自动化与仪器仪表, 2025(2): 247-251.
WANG Y. Research on the logistics and distribution route planning of terminal on-board UAV based on simulated annealing algorithm[J]. Automation & Instrumentation, 2025(2): 247-251.
[[13]]   XUE J, TAN Z F, DAI N N, et al. Particle swarm optimization bat algorithm path automatically planning research for police drones in hilly cities[J]. Journal of Systems Science and Information, 2024, 12(1): 125-144.
[[14]]   HONG J J, TSAI R G, CHEN X L, et al. U*: GA-based path planning algorithm for surface floating garbage cleaning robot[J]. Journal of Intelligent & Fuzzy Systems, 2024, 46(1): 837-850.
[[15]]   刘天湖, 赖嘉上, 孙伟龙, 等. 基于跳点优化蚁群算法的菠萝田间导航路径规划[J]. 农业机械学报, 2025, 56(4): 387-396.
LIU T H, LAI J S, SUN W L, et al. Navigation path planning of pineapple planting field based on jump point optimized ant colony algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2025, 56(4): 387-396.
[[16]]   田雅琴, 胡梦辉, 刘文涛, 等. 基于跳点搜索-遗传算法的自主移动机器人路径规划[J]. 工程设计学报, 2023, 30(6): 697-706.
TIAN Y Q, HU M H, LIU W T, et al. Path planning of autonomous mobile robot based on jump point search-genetic algorithm[J]. Chinese Journal of Engineering Design, 2023, 30(6): 697-706.
[[17]]   WAHAB M N AB, NAZIR A, KHALIL A, et al. Improved genetic algorithm for mobile robot path planning in static environments[J]. Expert Systems with Applications, 2024, 249(Part C): 123762.
[[18]]   CHONG Y, CHAI H Z, LI Y H, et al. Automatic recognition of geomagnetic suitability areas for path planning of autonomous underwater vehicle[J]. Marine Geodesy, 2021, 44(4): 287-305.
[[19]]   LI B J, WU G H, HE Y M, et al. An overview and experimental study of learning-based optimization algorithms for the vehicle routing problem[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(7): 1115-1138.
[[20]]   ZHENG X C, CAO J J, ZHANG Y L, et al. Optimized ant colony system algorithm for path planning in radiation environments[J]. Nuclear Engineering and Technology, 2025, 57(7): 103471.
[[21]]   HUO F C, ZHU S, DONG H L, et al. A new approach to smooth path planning of Ackerman mobile robot based on improved ACO algorithm and B-spline curve[J]. Robotics and Autonomous Systems, 2024, 175: 104655.
[[22]]   CHÂARI I, KOUBÂA A, TRIGUI S, et al. SmartPATH: an efficient hybrid ACO-GA algorithm for solving the global path planning problem of mobile robots[J]. International Journal of Advanced Robotic Systems, 2014, 11(7): 94.
[[23]]   NIU Q Y, FU Y, DONG X W. Omnidirectional AGV path planning based on improved genetic algorithm[J]. World Electric Vehicle Journal, 2024, 15(4): 166.
[[24]]   HENG H, RAHIMAN W. ACO-GA-based optimization to enhance global path planning for autonomous navigation in grid environments[J/OL]. IEEE Transactions on Evolutionary Computation, 2025: 1-15 (2025-02-18) [2025-04-23]. .
[1] Xin LIU,Qingfeng WU,Wenguang YANG. Optimization design method for construction machinery structure based on adaptive Kriging surrogate model[J]. Chinese Journal of Engineering Design, 2025, 32(6): 735-744.
[2] Chen LI,Chunjing SHI,Jinquan LI. Research on path planning for composite robot[J]. Chinese Journal of Engineering Design, 2025, 32(5): 623-633.
[3] Yinxian LI,Youbao JIANG,Yan LIU,Pengxiang GAO. Splitting method and forming experiment of 3D printed concrete spherical shell structure considering self-supporting critical angle[J]. Chinese Journal of Engineering Design, 2025, 32(2): 151-158.
[4] Heng CUI,Zongfang MA,Lin SONG,Chao LIU,Yixuan HAN. Path planning algorithm for concrete 3D printing based on continuous vertex partitioning[J]. Chinese Journal of Engineering Design, 2024, 31(3): 271-279.
[5] Xiaobo YU,Sujiao CHEN,Yonghua ZHANG,Binjun MA. Research on gear modification and modal optimization of centralized transmission system based on genetic algorithm[J]. Chinese Journal of Engineering Design, 2024, 31(3): 340-347.
[6] Binghui JI,Jian MAO,Bo QIAN. Temperature control method for dual-nozzle FDM 3D printer based on genetic algorithm-fuzzy PID[J]. Chinese Journal of Engineering Design, 2024, 31(2): 151-159.
[7] Yaqin TIAN,Menghui HU,Wentao LIU,Yinzhi HOU. Path planning of autonomous mobile robot based on jump point search-genetic algorithm[J]. Chinese Journal of Engineering Design, 2023, 30(6): 697-706.
[8] Yao FENG,Zhifeng ZHOU,Yichun SHEN,Liduan WANG. Obstacle avoidance path planning based on improved RRT algorithm[J]. Chinese Journal of Engineering Design, 2023, 30(6): 707-716.
[9] Di ZHAO,Guo CHEN,Xiaoli CHEN,Xiongjin WANG. Terrain adaptive mechanism design and obstacle-surmounting performance analysis of wheeled search and rescue robot[J]. Chinese Journal of Engineering Design, 2023, 30(5): 579-589.
[10] Fangjian DOU,Qingying QIU,Cheng GUAN,Jinjie SHAO,Haifeng WU. Optimization design of acceleration and deceleration curve of winding machine with large moment of inertia[J]. Chinese Journal of Engineering Design, 2023, 30(4): 503-511.
[11] Xin MI,Hong LI,Yan-qing GUO,Hong-wei GAO,Hao-nan WANG,Yi-fan NING. Parameter optimization of single plunger pump check valve based on linear regression[J]. Chinese Journal of Engineering Design, 2022, 29(6): 705-712.
[12] Qin LI,Ying-qi JIA,Yu-feng HUANG,Gang LI,Chuang YE. A multi-objective trajectory optimization algorithm for industrial robot[J]. Chinese Journal of Engineering Design, 2022, 29(2): 187-195.
[13] DING Shu-yong, ZHANG Zheng, DING Wen-jie, LIN Yong. Optimization design of multi-lane stereo garage and research on vehicle access strategy[J]. Chinese Journal of Engineering Design, 2021, 28(4): 443-449.
[14] YAN Guo-ping, ZHOU Jun-hong, ZHONG Fei, LI Zhe, ZHOU Hong-di, PENG Zhen-ao. Design and optimization of magnetic compression correction device for paper-plastic composite bag[J]. Chinese Journal of Engineering Design, 2021, 28(3): 367-373.
[15] CHENG Bin, JING Bing-xue. Process route optimization based on bacteria foraging and ant colony algorithm[J]. Chinese Journal of Engineering Design, 2020, 27(5): 600-607.