Please wait a minute...
Chinese Journal of Engineering Design  2025, Vol. 32 Issue (2): 151-158    DOI: 10.3785/j.issn.1006-754X.2025.04.162
Theory and Method of Mechanical Design     
Splitting method and forming experiment of 3D printed concrete spherical shell structure considering self-supporting critical angle
Yinxian LI1(),Youbao JIANG2(),Yan LIU2,Pengxiang GAO2
1.Elite Engineering School, Changsha University of Science and Technology, Changsha 410114, China
2.School of Civil and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, China
Download: HTML     PDF(3689KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to achieve the unsupported construction of 3D printed concrete spherical shell structures, a structure splitting method based on self-supporting critical angle is proposed. In this method, the structure splitting problem was converted into a single-objective optimization problem, and the relatively simple and feasible spherical shell structure splitting scheme was obtained by the improved genetic algorithm and dynamically optimized splitting strategy. The spherical shell structure could be split into multiple self-supporting printable units based on the obtained splitting scheme, and the whole structure could be assembled after the splitting units were printed one by one. For the concrete spherical shell structure, the number of splitting units increased with the increase of material self-supporting critical angle. To minimize the adverse effects of the number of splitting units on the subsequent connection and overall performance of the spherical shell structure, the self-supporting critical angle of the concrete material should be limited. The results of field forming experiments show that the proposed method can effectively split the 3D printed concrete spherical shell structure and avoid structural formwork during the printing process, thereby enhancing construction efficiency.



Key words3D printed concrete      spherical shell structure      self-supporting critical angle      genetic algorithm      structure splitting     
Received: 29 July 2024      Published: 06 May 2025
CLC:  TU 741  
Fund:  LI Y X, JIANG Y B, LIU Y, et al. Splitting method and forming experiment of 3D printed concrete spherical shell structure considering self-supporting critical angle[J]. Chinese Journal of Engineering Design, 2025, 32(2): 151-158
Corresponding Authors: Youbao JIANG     E-mail: L505175648@163.com;jiangybseu@163.com
Cite this article:

Yinxian LI,Youbao JIANG,Yan LIU,Pengxiang GAO. Splitting method and forming experiment of 3D printed concrete spherical shell structure considering self-supporting critical angle. Chinese Journal of Engineering Design, 2025, 32(2): 151-158.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2025.04.162     OR     https://www.zjujournals.com/gcsjxb/Y2025/V32/I2/151


考虑自支撑临界角的3D打印混凝土球壳结构拆分方法与成形实验

为实现3D打印混凝土球壳结构的无支撑建造,提出了一种基于自支撑临界角的结构拆分方法。该方法将结构拆分问题转化为单目标优化问题,并根据改进遗传算法和动态优化拆分策略,寻求得到较为简便、可行的球壳结构拆分方案。基于所获得的拆分方案,可将球壳结构拆分成若干个可自支撑打印的单元,对拆分单元逐一打印后完成整体结构的拼接。对于混凝土球壳结构而言,随着材料自支撑临界角的增大,拆分单元数量增加。为降低拆分单元数量过多对球壳结构后续连接及整体性能的不利影响,混凝土材料的自支撑临界角不宜过大。现场成形实验结果表明,基于所提出的方法可实现3D打印混凝土球壳结构的有效拆分,在打印过程中能够避免结构支模工作,提高了建造效率。


关键词: 3D打印混凝土,  球壳结构,  自支撑临界角,  遗传算法,  结构拆分 
Fig.1 Schematic of overhanging area of structure
Fig.2 Schematic of spherical shell structure splitting
Fig.3 Splitting and printing process of spherical shell structure
Fig.4 Splitting process of spherical shell structure based on improved genetic algorithm
Fig.5 Schematic diagram of spherical shell structure
Fig.6 STL model of spherical shell structure
Fig.7 Cross-section splitting of spherical shell structure
环向拆分数/次拆分单元数量/个连接处面积/cm2
3121 232.4
4161 358.1
5201 483.8
6241 609.5
Table 1 Splitting results of spherical shell structure under different circumferential splitting times
Fig.8 Splitting process of spherical shell structure with self-supporting critical angle of 65°
分层序号环向拆分数N/次环向拆分角度θj/(°)分割点坐标(xi,?yi)/mm分割平面倾斜角度αi?/(°)
θ1θ2θ3
1360180300(225,108.97)25.84
260180300(155,196.15)51.68
360180300(55,243.875)77.29
460180300(0,250)90.00
Table 2 Splitting scheme of spherical shell structure with self-supporting critical angle of 65°
材料质量分数/%
细砂38.30
普通硅酸盐水泥34.10
13.60
偏高岭土4.80
粉煤灰4.80
硅灰2.40
快硬水泥1.80
纤维0.08
减水剂0.01
消泡剂0.09
纤维素醚0.02
Table 3 Mass fraction of each component of concrete material
Fig.9 Measuring principle of self-supporting critical angle of concrete material
Fig.10 Measuring site of self-supporting critical angle of concrete material
Fig.11 Each concrete block during printing
Fig.12 Each concrete block of K1 part
Fig.13 K1 part structure after assembly
Fig.14 Spherical shell structure and its diameter
[1]   蒋友宝, 胡佳鑫, 周浩, 等. 起始点逐层等角度移动时3D打印混凝土圆管可连续打印高度[J]. 建筑结构学报, 2022, 43(9): 222-231.
JIANG Y B, HU J X, ZHOU H, et al. Continuous printed height of 3D printing concrete circular tube with equiangular movements of starting point[J]. Journal of Building Structures, 2022, 43(9): 222-231.
[2]   贺昊轩, 蒋友宝, 邓云峰, 等. 3D打印预制混凝土扭曲面模壳-现浇柱节段成形试验研究[J]. 长沙理工大学学报(自然科学版), 2022, 19(4): 47-54.
HE H X, JIANG Y B, DENG Y F, et al. Experimental study on segmental forming of 3D printing prefabricated concrete twisted formwork-cast-in-situ concrete column[J]. Journal of Changsha University of Science & Technology (Natural Science), 2022, 19(4): 47-54.
[3]   林晓阳, 叶俊, 王震, 等. 考虑悬垂约束的3D打印结构优化方法及实验研究[J/OL]. 工程力学, 2023: 1-11(2023-09-05) [2024-07-01]. .
LIN X Y, YE J, WANG Z, et al. Optimization method and experimental study of 3D printed structures considering overhang constraints[J/OL]. Engineering Mechanics, 2023: 1-11(2023-09-05) [2024-07-01]. .
[4]   周钰琛. 无支撑建筑3D打印技术应用研究[D]. 无锡: 江南大学, 2023.
ZHOU Y C. Research on the application of support-free 3D printing technology for architectures[D]. Wuxi: Jiangnan University, 2023.
[5]   王铮, 赵东标. FDM五轴3D打印支撑消减算法研究[J]. 机械科学与技术, 2023, 42(10): 1673-1677.
WANG Z, ZHAO D B. Study on elimination-reduction algorithm of support in five-axis 3D printing[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(10): 1673-1677.
[6]   KONTOVOURKIS O, PHOCAS M C, TRYFONOS G, et al. Multi-axis 3D printing of material reduced shell structures on a reconfigurable supporting system using topology optimization principles[J]. Procedia Manufacturing, 2020, 44: 379-386.
[7]   KONTOVOURKIS O, PHOCAS M C, KATSAMBAS C. Digital to physical development of a reconfigurable modular formwork for concrete casting and assembling of a shell structure[J]. Automation in Construction, 2019, 106: 102855.
[8]   YANG Y, CHAI S M, FU X M. Computing interior support-free structure via hollow-to-fill construction[J]. Computers & Graphics, 2018, 70: 148-156.
[9]   ZENG L, LAI L M, QI D, et al. Efficient slicing procedure based on adaptive layer depth normal image[J]. Computer-Aided Design, 2011, 43(12): 1577-1586.
[10]   WEI X Z, QIU S Q, ZHU L, et al. Toward support-free 3D printing: a skeletal approach for partitioning models[J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(10): 2799-2812.
[11]   颜欣桐, 徐龙河. 基于遗传算法的钢筋混凝土框架-剪力墙结构失效模式多目标优化[J]. 工程力学, 2018, 35(4): 69-77.
YAN X T, XU L H. Multi-objective optimization of genetic algorithm-based failure mode for reinforced concrete frame-shear wall structures[J]. Engineering Mechanics, 2018, 35(4): 69-77.
[12]   危大结, 舒赣平, 顾华健. 自由曲面结构多目标形态优化[J]. 建筑结构, 2017, 47(5): 59-63.
WEI D J, SHU G P, GU H J. Multi-objective shape optimization of free-form surface structures[J]. Building Structure, 2017, 47(5): 59-63.
[13]   易伟建, 刘霞. 基于遗传算法的结构损伤诊断研究[J]. 工程力学, 2001, 18(2): 64-71.
YI W J, LIU X. Damage diagnosis of structures by genetic algorithms[J]. Engineering Mechanics, 2001, 18(2): 64-71.
[14]   HU H L, LI Z, JIN X G, et al. Curve skeleton extraction from 3D point clouds through hybrid feature point shifting and clustering[J]. Computer Graphics Forum, 2020, 39(6): 111-132.
[15]   胡伟南, 冯颖, 王迪, 等. 激光选区熔化成形低角度无支撑结构的方法与工艺研究(特邀)[J]. 中国激光, 2024, 51(4): 168-180.
HU W N, FENG Y, WANG D, et al. Method and process of selective laser melting forming low-angle support-free structures(invited)[J]. Chinese Journal of Lasers, 2024, 51(4): 168-180.
[16]   崔衡, 马宗方, 宋琳, 等. 基于连续顶点分区的混凝土3D打印路径规划算法[J]. 工程设计学报, 2024, 31(3): 271-279.
CUI H, MA Z F, SONG L, et al. Path planning algorithm for concrete 3D printing based on continuous vertex partitioning[J]. Chinese Journal of Engineering Design, 2024, 31(3): 271-279.
[17]   彭勃, 葛序尧, 单远铭. 加固用高性能聚合物改性砂浆研究[J]. 建筑结构, 2009, 39(1): 102-104.
PENG B, GE X Y, SHAN Y M. Study on the high performance polymer modified mortar for structural strengthening[J]. Building Structure, 2009, 39(1): 102-104.
[18]   李之建, 马国伟, 王里. 3D打印连续微筋混凝土梁受弯承载力试验研究[J]. 实验力学, 2021, 36(4): 516-524.
LI Z J, MA G W, WANG L. Experimental study on the bending capacity of 3D printed continuous micro-reinforcement reinforced concrete beams[J]. Journal of Experimental Mechanics, 2021, 36(4): 516-524.
[19]   朱艳梅, 张翼, 蒋正武. 羟丙基甲基纤维素对3D打印砂浆性能的影响[J]. 建筑材料学报, 2021, 24(6): 1123-1130.
ZHU Y M, ZHANG Y, JIANG Z W. Effect of hydroxypropyl methylcellulose ether on properties of 3D printing mortar[J]. Journal of Building Materials, 2021, 24(6): 1123-1130.
[1] Ni ZENG,Zongfang MA,Lin SONG,Ming DUAN. Research on intelligent detection method of 3D printed concrete interface pore[J]. Chinese Journal of Engineering Design, 2025, 32(1): 11-22.
[2] Heng CUI,Zongfang MA,Lin SONG,Chao LIU,Yixuan HAN. Path planning algorithm for concrete 3D printing based on continuous vertex partitioning[J]. Chinese Journal of Engineering Design, 2024, 31(3): 271-279.
[3] Xiaobo YU,Sujiao CHEN,Yonghua ZHANG,Binjun MA. Research on gear modification and modal optimization of centralized transmission system based on genetic algorithm[J]. Chinese Journal of Engineering Design, 2024, 31(3): 340-347.
[4] Binghui JI,Jian MAO,Bo QIAN. Temperature control method for dual-nozzle FDM 3D printer based on genetic algorithm-fuzzy PID[J]. Chinese Journal of Engineering Design, 2024, 31(2): 151-159.
[5] Yaqin TIAN,Menghui HU,Wentao LIU,Yinzhi HOU. Path planning of autonomous mobile robot based on jump point search-genetic algorithm[J]. Chinese Journal of Engineering Design, 2023, 30(6): 697-706.
[6] Di ZHAO,Guo CHEN,Xiaoli CHEN,Xiongjin WANG. Terrain adaptive mechanism design and obstacle-surmounting performance analysis of wheeled search and rescue robot[J]. Chinese Journal of Engineering Design, 2023, 30(5): 579-589.
[7] Fangjian DOU,Qingying QIU,Cheng GUAN,Jinjie SHAO,Haifeng WU. Optimization design of acceleration and deceleration curve of winding machine with large moment of inertia[J]. Chinese Journal of Engineering Design, 2023, 30(4): 503-511.
[8] Xin MI,Hong LI,Yan-qing GUO,Hong-wei GAO,Hao-nan WANG,Yi-fan NING. Parameter optimization of single plunger pump check valve based on linear regression[J]. Chinese Journal of Engineering Design, 2022, 29(6): 705-712.
[9] Qin LI,Ying-qi JIA,Yu-feng HUANG,Gang LI,Chuang YE. A multi-objective trajectory optimization algorithm for industrial robot[J]. Chinese Journal of Engineering Design, 2022, 29(2): 187-195.
[10] DING Shu-yong, ZHANG Zheng, DING Wen-jie, LIN Yong. Optimization design of multi-lane stereo garage and research on vehicle access strategy[J]. Chinese Journal of Engineering Design, 2021, 28(4): 443-449.
[11] YAN Guo-ping, ZHOU Jun-hong, ZHONG Fei, LI Zhe, ZHOU Hong-di, PENG Zhen-ao. Design and optimization of magnetic compression correction device for paper-plastic composite bag[J]. Chinese Journal of Engineering Design, 2021, 28(3): 367-373.
[12] ZHANG Shuai, HAN Jun, TU Qun-zhang, YANG Xiao-qiang, YANG Xuan. Multi-objective optimization design of deployable mechanism of scissor folding bridge based on GA-NLP[J]. Chinese Journal of Engineering Design, 2020, 27(1): 67-75.
[13] LIU Chun-qing, WANG Wen-han. Parameter optimization of generating method spherical precision grinding based on ANN-GA[J]. Chinese Journal of Engineering Design, 2019, 26(4): 395-402.
[14] MA Tian-bing, WANG Xiao-dong, DU Fei, WANG Xin-quan. Fault diagnosis for rigid guide based on GA-SVM[J]. Chinese Journal of Engineering Design, 2019, 26(2): 170-176.
[15] DENG Xing, YU Lan-feng, LEI Cong, XU Jiang-ping, XIAO Ze-ping. Lightweight design of trackless telescopic gantry crane based on response surface method[J]. Chinese Journal of Engineering Design, 2018, 25(3): 288-294.