Optimization Design |
|
|
|
|
Fatigue life optimization of sheer wave vibroseis vibrator baseplate based on NSGA-Ⅱ and TOPSIS method |
Zhen CHEN1,2( ),Qingjie RAN1( ),Xiaoyang YING1,Nengpeng CHEN1,Chaocheng WEI1,Qiaomu WANG1 |
1.School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China 2.Sichuan Key Laboratory of Shale Gas Evaluation and Exploitation, Chengdu 610500, China |
|
|
Abstract The sheer wave vibroseis vibrator baseplate is a key component in shale gas exploration, and its fatigue life directly affects the service life of vibroseis and the exploration accuracy. However, traditional optimization methods for vibrator baseplate fatigue life ignore the welding residual stress between the baseplate and the baseplate teeth, resulting in poor performance in anti-fatigue optimization design for the baseplate structure. Therefore, the local sensitivity method was used to conduct a sensitivity analysis for the fatigue life of the baseplate, and the welding residual stress was determined as the key factor affecting the fatigue life. Subsequently, mathematical models between the maximum welding residual stresses in all directions of the baseplate and the welding speed and interlayer temperature were established. Meanwhile, with the maximum welding residual stresses in all directions as the constraints and the fatigue life as the optimization target, the corresponding optimization model was constructed. Finally, the NSGA-Ⅱ (non-dominated sorting genetic algorithm-Ⅱ) was used to obtain the Pareto solution set, and the best optimization scheme was determined by combining the entropy weight method and the TOPSIS (technique for order preference by similarity to ideal solution): the welding speed was 10.23 mm/s and the welding interlayer temperature was 105 ℃. The results showed that the fatigue life of the optimized baseplate was 10.23 years, which was 17.72% higher than that before optimization. The research results can provide scientific and effective theoretical methods and engineering guidance for the fatigue life optimization of the sheer wave vibroseis vibrator baseplate.
|
Received: 20 May 2024
Published: 06 May 2025
|
|
Corresponding Authors:
Qingjie RAN
E-mail: 117976897@qq.com;1638785198@qq.com
|
基于NSGA-Ⅱ和TOPSIS法的横波可控震源振动器平板疲劳寿命优化
横波可控震源振动器平板作为页岩气勘探中的关键部件,其疲劳寿命直接影响可控震源的使用寿命和勘探精度。然而,传统的振动器平板疲劳寿命优化方法未考虑平板与平板齿间焊接残余应力的影响,导致平板结构在抗疲劳优化设计方面效果不佳。为此,使用局部灵敏度法对平板疲劳寿命进行敏感性分析,确定了焊接残余应力为影响疲劳寿命的关键因素。随后,建立了平板的各向最大焊接残余应力与焊接速度和焊接层间温度之间的数学模型,并以各向最大焊接残余应力为约束,以疲劳寿命为优化目标,建立相应的优化模型。最后,利用NSGA-Ⅱ(non-dominated sorting genetic algorithm-Ⅱ,非支配排序遗传算法-Ⅱ)获取Pareto解集,并结合熵权法和TOPSIS(technique for order preference by similarity to ideal solution,逼近理想解排序)法确定最佳优化方案:焊接速度为10.23 mm/s,焊接层间温度为105 ℃。结果表明,优化后平板的疲劳寿命为10.23年,相比优化前提高了17.72%。研究结果可为横波可控震源振动器平板的疲劳寿命优化提供科学有效的理论方法和工程指导。
关键词:
横波可控震源,
振动器平板,
疲劳寿命,
焊接残余应力,
NSGA-Ⅱ,
TOPSIS法
|
|
[1] |
陈振. 可控震源振动器平板疲劳寿命和疲劳可靠性分析研究[D]. 成都: 西南石油大学, 2016. doi:10.1111/ffe.12467 CHEN Z. Research on the fatigue life and fatigue reliability analysis of the vibroseis baseplate[D]. Chengdu: Southwest Petroleum University, 2016.
doi: 10.1111/ffe.12467
|
|
|
[2] |
VAN DO V N, LEE C H, CHANG K H. High cycle fatigue analysis in presence of residual stresses by using a continuum damage mechanics model[J]. International Journal of Fatigue, 2015, 70: 51-62.
|
|
|
[3] |
何海风, 刘怀举, 朱才朝, 等. 残余应力对齿轮弯曲疲劳的量化影响研究[J]. 机械工程学报, 2023, 59(4): 53-61. doi:10.3901/jme.2023.04.053 HE H F, LIU H J, ZHU C C, et al. Quantitative effect of residual stress on gear bending fatigue[J]. Journal of Mechanical Engineering, 2023, 59(4): 53-61.
doi: 10.3901/jme.2023.04.053
|
|
|
[4] |
李莹. 公路钢桥疲劳性能及可靠性研究[D]. 哈尔滨: 哈尔滨工业大学, 2008. LI Y. Research on fatigue performance and reliability of highway steel bridges[D]. Harbin: Harbin Institute of Technology, 2008.
|
|
|
[5] |
MINER M A. Cumulative damage in fatigue[J]. Journal of Applied Mechanics, 1945, 12(3): A159-A164.
|
|
|
[6] |
丁彦闯, 兆文忠. 焊接结构抗疲劳优化设计方法及应用[J]. 焊接学报, 2008, 29(6): 29-32, 114. DING Y C, ZHAO W Z. Anti-fatigue optimization design of welded structure[J]. Transactions of the China Welding Institution, 2008, 29(6): 29-32, 114.
|
|
|
[7] |
张红卫, 桂良进, 范子杰. 焊接残余应力对桥壳疲劳寿命的影响研究[J]. 机械工程学报, 2022, 58(24): 102-110. doi:10.3901/jme.2022.24.102 ZHANG H W, GUI L J, FAN Z J. Fatigue life prediction and experiment of an axle housing considering welding residual stresses[J]. Journal of Mechanical Engineering, 2022, 58(24): 102-110.
doi: 10.3901/jme.2022.24.102
|
|
|
[8] |
丁勇, 韩凌霞, 吕建华, 等. 模数式桥梁伸缩缝疲劳寿命分析与结构优化[J]. 中国公路学报, 2021, 34(2): 265-275. DING Y, HAN L X, LÜ J H, et al. Fatigue life analysis and structural optimization of modular bridge expansion joint[J]. China Journal of Highway and Transport, 2021, 34(2): 265-275.
|
|
|
[9] |
周杰, 贾云献, 刘鑫, 等. 基于疲劳寿命的履带车辆侧减速器传动轴结构优化[J]. 机械设计, 2019, 36(4): 82-86. ZHOU J, JIA Y X, LIU X, et al. Structural optimization of tracked vehicle’s side-reducer drive shaft based on the fatigue-life prediction[J]. Journal of Machine Design, 2019, 36(4): 82-86.
|
|
|
[10] |
许期英, 钟自锋. 汽车横向稳定杆疲劳寿命分析及其优化设计[J]. 机械强度, 2019, 41(5): 1228-1232. XU Q Y, ZHONG Z F. Fatigue life analysis and optimization design of vehicle horizontal stabilizer bar[J]. Journal of Mechanical Strength, 2019, 41(5): 1228-1232.
|
|
|
[11] |
LUKIĆ M, CREMONA C. Probabilistic optimization of welded joints maintenance versus fatigue and fracture[J]. Reliability Engineering & System Safety, 2001, 72(3): 253-264.
|
|
|
[12] |
王剑, 王悦东, 陈秉智. 焊接结构焊缝疲劳寿命的灵敏度分析[J]. 固体力学学报, 2010, 31(): 281-284. WANG J, WANG Y D, CHEN B Z. Structural stress method based sensitivity analysis of fatigue life evaluation about weld structures[J]. Chinese Journal of Solid Mechanics, 2010, 31(): 281-284.
|
|
|
[13] |
RIZZO C M, AYALA-URAGA E. Fatigue crack growth assessment of welded joints in ships structures: a reliability-based sensitivity study[C]//25th International Conference on Offshore Mechanics and Arctic Engineering. Hamburg, Jun. 4-9, 2006.
|
|
|
[14] |
叶红玲, 苏鹏飞, 王伟伟, 等. 疲劳寿命约束下的连续体结构拓扑优化[J]. 北京工业大学学报, 2020, 46(3): 236-244. YE H L, SU P F, WANG W W, et al. Continuum topology optimization with fatigue life constraint[J]. Journal of Beijing University of Technology, 2020, 46(3): 236-244.
|
|
|
[15] |
宋烨空, 杨金堂, 徐子晗, 等. 关节轴承静态疲劳特性的响应面优化[J]. 机械设计与制造, 2022(2): 229-232, 236. SONG Y K, YANG J T, XU Z H, et al. Response surface optimization of static fatigue characteristics of joint bearings[J]. Machinery Design & Manufacture, 2022(2): 229-232, 236.
|
|
|
[16] |
田旭杨, 陈泽君. 基于改进NSGA-Ⅱ的列车运行多目标优化方法[J]. 计算机应用, 2021, 41(): 153-161. TIAN X Y, CHEN Z J. Multi-objective optimization method of train operation based on improved NSGA-Ⅱ[J]. Journal of Computer Applications, 2021, 41(): 153-161.
|
|
|
[17] |
陈振, 陈能鹏, 冉庆杰, 等. 耦合焊接残余应力的横波可控震源振动器平板疲劳寿命预测[J]. 工程设计学报, 2025, 32(1): 102-111. CHEN Z, CHEN N P, RAN Q J, et al. Fatigue life prediction of sheer wave vibroseis vibrator baseplate coupled with welding residual stress[J]. Chinese Journal of Engineering Design, 2025, 32(1): 102-111.
|
|
|
[18] |
赵永翔, 高庆, 王金诺. 估计三种常用应力-寿命模型概率设计S—N曲线的统一方法[J]. 核动力工程, 2001, 22(1): 42-52. ZHAO Y X, GAO Q, WANG J N. Unified approach for estimating the probabilistic design S-N curves of three commonly used fatigue stress-life models[J]. Nuclear Power Engineering, 2001, 22(1): 42-52.
|
|
|
[19] |
CHEN Z, LI T, XUE X W, et al. Fatigue reliability analysis and optimization of vibrator baseplate based on fuzzy comprehensive evaluation method[J]. Engineering Failure Analysis, 2021, 127: 105357.
|
|
|
[20] |
陈炉云, 郭永晋, 易宏. 含焊接残余应力的结构模型参数修正研究[J]. 振动与冲击, 2020, 39(8): 245-249. CHEN L Y, GUO Y J, YI H. Model parameter updating study consideration of welding residual stress distribution[J]. Journal of Vibration and Shock, 2020, 39(8): 245-249.
|
|
|
[21] |
魏崇一. T型接头焊接残余应力分析和释放研究[D]. 秦皇岛: 燕山大学, 2020. WEI C Y. Analysis and relaxation study of residual stress in T joint welding[D]. Qinhuangdao: Yanshan University, 2020.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|