Please wait a minute...
Chinese Journal of Engineering Design  2025, Vol. 32 Issue (2): 272-280    DOI: 10.3785/j.issn.1006-754X.2025.04.141
Optimization Design     
Fatigue life optimization of sheer wave vibroseis vibrator baseplate based on NSGA-Ⅱ and TOPSIS method
Zhen CHEN1,2(),Qingjie RAN1(),Xiaoyang YING1,Nengpeng CHEN1,Chaocheng WEI1,Qiaomu WANG1
1.School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China
2.Sichuan Key Laboratory of Shale Gas Evaluation and Exploitation, Chengdu 610500, China
Download: HTML     PDF(3735KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The sheer wave vibroseis vibrator baseplate is a key component in shale gas exploration, and its fatigue life directly affects the service life of vibroseis and the exploration accuracy. However, traditional optimization methods for vibrator baseplate fatigue life ignore the welding residual stress between the baseplate and the baseplate teeth, resulting in poor performance in anti-fatigue optimization design for the baseplate structure. Therefore, the local sensitivity method was used to conduct a sensitivity analysis for the fatigue life of the baseplate, and the welding residual stress was determined as the key factor affecting the fatigue life. Subsequently, mathematical models between the maximum welding residual stresses in all directions of the baseplate and the welding speed and interlayer temperature were established. Meanwhile, with the maximum welding residual stresses in all directions as the constraints and the fatigue life as the optimization target, the corresponding optimization model was constructed. Finally, the NSGA-Ⅱ (non-dominated sorting genetic algorithm-Ⅱ) was used to obtain the Pareto solution set, and the best optimization scheme was determined by combining the entropy weight method and the TOPSIS (technique for order preference by similarity to ideal solution): the welding speed was 10.23 mm/s and the welding interlayer temperature was 105 ℃. The results showed that the fatigue life of the optimized baseplate was 10.23 years, which was 17.72% higher than that before optimization. The research results can provide scientific and effective theoretical methods and engineering guidance for the fatigue life optimization of the sheer wave vibroseis vibrator baseplate.



Key wordssheer wave vibroseis      vibrator baseplate      fatigue life      welding residual stress      NSGA-Ⅱ      TOPSIS method     
Received: 20 May 2024      Published: 06 May 2025
CLC:  TH 16  
Corresponding Authors: Qingjie RAN     E-mail: 117976897@qq.com;1638785198@qq.com
Cite this article:

Zhen CHEN,Qingjie RAN,Xiaoyang YING,Nengpeng CHEN,Chaocheng WEI,Qiaomu WANG. Fatigue life optimization of sheer wave vibroseis vibrator baseplate based on NSGA-Ⅱ and TOPSIS method. Chinese Journal of Engineering Design, 2025, 32(2): 272-280.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2025.04.141     OR     https://www.zjujournals.com/gcsjxb/Y2025/V32/I2/272


基于NSGA-ⅡTOPSIS法的横波可控震源振动器平板疲劳寿命优化

横波可控震源振动器平板作为页岩气勘探中的关键部件,其疲劳寿命直接影响可控震源的使用寿命和勘探精度。然而,传统的振动器平板疲劳寿命优化方法未考虑平板与平板齿间焊接残余应力的影响,导致平板结构在抗疲劳优化设计方面效果不佳。为此,使用局部灵敏度法对平板疲劳寿命进行敏感性分析,确定了焊接残余应力为影响疲劳寿命的关键因素。随后,建立了平板的各向最大焊接残余应力与焊接速度和焊接层间温度之间的数学模型,并以各向最大焊接残余应力为约束,以疲劳寿命为优化目标,建立相应的优化模型。最后,利用NSGA-Ⅱ(non-dominated sorting genetic algorithm-Ⅱ,非支配排序遗传算法-Ⅱ)获取Pareto解集,并结合熵权法和TOPSIS(technique for order preference by similarity to ideal solution,逼近理想解排序)法确定最佳优化方案:焊接速度为10.23 mm/s,焊接层间温度为105 ℃。结果表明,优化后平板的疲劳寿命为10.23年,相比优化前提高了17.72%。研究结果可为横波可控震源振动器平板的疲劳寿命优化提供科学有效的理论方法和工程指导。


关键词: 横波可控震源,  振动器平板,  疲劳寿命,  焊接残余应力,  NSGA-Ⅱ,  TOPSIS法 
Fig.1 Structure of shear wave vibroseis
Fig.2 Fatigue life curve of vibrator baseplate
Fig.3 Sensitivity ratio curve of factors influencing on fatigue life of vibrator baseplate
设计变量取值
焊接速度/(mm/s)6、8、10、12
焊接层间温度/℃100、150、200、250
Table 1 Values of welding speed and welding interlayer temperature
焊接速度/(mm/s)

焊接层间

温度/℃

最大焊接残余应力/MPa
XYZ
6100490.75185.90110.83
150490.67168.63102.93
200489.55153.9893.24
250488.44150.0590.42
8100470.42186.93135.47
150498.04165.73112.91
200496.80153.67100.52
250523.02169.67118.79
10100460.20114.02108.28
150499.89110.4881.70
200493.83131.1398.51
250501.36170.83115.58
12100501.91128.10100.62
150529.27135.3294.56
200514.95141.41108.94
250511.10136.43125.22
Table 2 Maximum welding residual stresses in all directions of vibrator baseplate under different welding process parameters
焊接层间温度/℃X向最大焊接残余应力Y向最大焊接残余应力Z向最大焊接残余应力
仿真值/MPa计算值/MPa相对误差/%仿真值/MPa计算值/MPa相对误差/%仿真值/MPa计算值/MPa相对误差/%
120501.78488.78-2.59177.53174.22-1.86114.02118.503.93
180507.39500.22-1.41161.40155.07-3.9294.3997.943.76
220508.07502.56-1.08154.70157.711.9599.00100.271.28
Table 3 Comparison of simulation values and calculation values of maximum welding residual stresses in all directions of vibrator baseplate (v=8 mm/s)
Fig.4 Variation law of maximum welding residual stress in X direction of vibrator baseplate
Fig.5 Variation law of maximum welding residual stress in Y direction of vibrator baseplate
Fig.6 Variation law of maximum welding residual stress in Z direction of vibrator baseplate
Fig.7 Solution process of NSGA-Ⅱ
参数数值参数数值
交叉概率0.9变异概率0.1
交叉分布指数20变异分布指数20
种群数量/个400迭代数/次200
Table 4 Parameter setting for NSGA-Ⅱ
Fig.8 Pareto solution set of welding residual stress of vibrator baseplate based on NSGA-Ⅱ
Fig.9 Contribution degree of welding process parameters to welding residual stresses in all directions
性能指标焊接速度焊接层间温度
X向焊接残余应力0.113 00.158 2
Y向焊接残余应力0.198 50.014 7
Z向焊接残余应力0.084 20.157 5
Table 5 Influence weight of welding process parameters on welding residual stresses in all directions
性能指标dj+dj-ηj排序结果
X向焊接残余应力0.085 50.146 40.631 21
Y向焊接残余应力0.143 50.114 30.443 33
Z向焊接残余应力0.114 30.142 80.555 52
Table 6 Closeness degree and sequence of welding residual stresses in all directions to their positive and negative ideal solutions
[1]   陈振. 可控震源振动器平板疲劳寿命和疲劳可靠性分析研究[D]. 成都: 西南石油大学, 2016. doi:10.1111/ffe.12467
CHEN Z. Research on the fatigue life and fatigue reliability analysis of the vibroseis baseplate[D]. Chengdu: Southwest Petroleum University, 2016.
doi: 10.1111/ffe.12467
[2]   VAN DO V N, LEE C H, CHANG K H. High cycle fatigue analysis in presence of residual stresses by using a continuum damage mechanics model[J]. International Journal of Fatigue, 2015, 70: 51-62.
[3]   何海风, 刘怀举, 朱才朝, 等. 残余应力对齿轮弯曲疲劳的量化影响研究[J]. 机械工程学报, 2023, 59(4): 53-61. doi:10.3901/jme.2023.04.053
HE H F, LIU H J, ZHU C C, et al. Quantitative effect of residual stress on gear bending fatigue[J]. Journal of Mechanical Engineering, 2023, 59(4): 53-61.
doi: 10.3901/jme.2023.04.053
[4]   李莹. 公路钢桥疲劳性能及可靠性研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.
LI Y. Research on fatigue performance and reliability of highway steel bridges[D]. Harbin: Harbin Institute of Technology, 2008.
[5]   MINER M A. Cumulative damage in fatigue[J]. Journal of Applied Mechanics, 1945, 12(3): A159-A164.
[6]   丁彦闯, 兆文忠. 焊接结构抗疲劳优化设计方法及应用[J]. 焊接学报, 2008, 29(6): 29-32, 114.
DING Y C, ZHAO W Z. Anti-fatigue optimization design of welded structure[J]. Transactions of the China Welding Institution, 2008, 29(6): 29-32, 114.
[7]   张红卫, 桂良进, 范子杰. 焊接残余应力对桥壳疲劳寿命的影响研究[J]. 机械工程学报, 2022, 58(24): 102-110. doi:10.3901/jme.2022.24.102
ZHANG H W, GUI L J, FAN Z J. Fatigue life prediction and experiment of an axle housing considering welding residual stresses[J]. Journal of Mechanical Engineering, 2022, 58(24): 102-110.
doi: 10.3901/jme.2022.24.102
[8]   丁勇, 韩凌霞, 吕建华, 等. 模数式桥梁伸缩缝疲劳寿命分析与结构优化[J]. 中国公路学报, 2021, 34(2): 265-275.
DING Y, HAN L X, LÜ J H, et al. Fatigue life analysis and structural optimization of modular bridge expansion joint[J]. China Journal of Highway and Transport, 2021, 34(2): 265-275.
[9]   周杰, 贾云献, 刘鑫, 等. 基于疲劳寿命的履带车辆侧减速器传动轴结构优化[J]. 机械设计, 2019, 36(4): 82-86.
ZHOU J, JIA Y X, LIU X, et al. Structural optimization of tracked vehicle’s side-reducer drive shaft based on the fatigue-life prediction[J]. Journal of Machine Design, 2019, 36(4): 82-86.
[10]   许期英, 钟自锋. 汽车横向稳定杆疲劳寿命分析及其优化设计[J]. 机械强度, 2019, 41(5): 1228-1232.
XU Q Y, ZHONG Z F. Fatigue life analysis and optimization design of vehicle horizontal stabilizer bar[J]. Journal of Mechanical Strength, 2019, 41(5): 1228-1232.
[11]   LUKIĆ M, CREMONA C. Probabilistic optimization of welded joints maintenance versus fatigue and fracture[J]. Reliability Engineering & System Safety, 2001, 72(3): 253-264.
[12]   王剑, 王悦东, 陈秉智. 焊接结构焊缝疲劳寿命的灵敏度分析[J]. 固体力学学报, 2010, 31(): 281-284.
WANG J, WANG Y D, CHEN B Z. Structural stress method based sensitivity analysis of fatigue life evaluation about weld structures[J]. Chinese Journal of Solid Mechanics, 2010, 31(): 281-284.
[13]   RIZZO C M, AYALA-URAGA E. Fatigue crack growth assessment of welded joints in ships structures: a reliability-based sensitivity study[C]//25th International Conference on Offshore Mechanics and Arctic Engineering. Hamburg, Jun. 4-9, 2006.
[14]   叶红玲, 苏鹏飞, 王伟伟, 等. 疲劳寿命约束下的连续体结构拓扑优化[J]. 北京工业大学学报, 2020, 46(3): 236-244.
YE H L, SU P F, WANG W W, et al. Continuum topology optimization with fatigue life constraint[J]. Journal of Beijing University of Technology, 2020, 46(3): 236-244.
[15]   宋烨空, 杨金堂, 徐子晗, 等. 关节轴承静态疲劳特性的响应面优化[J]. 机械设计与制造, 2022(2): 229-232, 236.
SONG Y K, YANG J T, XU Z H, et al. Response surface optimization of static fatigue characteristics of joint bearings[J]. Machinery Design & Manufacture, 2022(2): 229-232, 236.
[16]   田旭杨, 陈泽君. 基于改进NSGA-Ⅱ的列车运行多目标优化方法[J]. 计算机应用, 2021, 41(): 153-161.
TIAN X Y, CHEN Z J. Multi-objective optimization method of train operation based on improved NSGA-Ⅱ[J]. Journal of Computer Applications, 2021, 41(): 153-161.
[17]   陈振, 陈能鹏, 冉庆杰, 等. 耦合焊接残余应力的横波可控震源振动器平板疲劳寿命预测[J]. 工程设计学报, 2025, 32(1): 102-111.
CHEN Z, CHEN N P, RAN Q J, et al. Fatigue life prediction of sheer wave vibroseis vibrator baseplate coupled with welding residual stress[J]. Chinese Journal of Engineering Design, 2025, 32(1): 102-111.
[18]   赵永翔, 高庆, 王金诺. 估计三种常用应力-寿命模型概率设计SN曲线的统一方法[J]. 核动力工程, 2001, 22(1): 42-52.
ZHAO Y X, GAO Q, WANG J N. Unified approach for estimating the probabilistic design S-N curves of three commonly used fatigue stress-life models[J]. Nuclear Power Engineering, 2001, 22(1): 42-52.
[19]   CHEN Z, LI T, XUE X W, et al. Fatigue reliability analysis and optimization of vibrator baseplate based on fuzzy comprehensive evaluation method[J]. Engineering Failure Analysis, 2021, 127: 105357.
[20]   陈炉云, 郭永晋, 易宏. 含焊接残余应力的结构模型参数修正研究[J]. 振动与冲击, 2020, 39(8): 245-249.
CHEN L Y, GUO Y J, YI H. Model parameter updating study consideration of welding residual stress distribution[J]. Journal of Vibration and Shock, 2020, 39(8): 245-249.
[21]   魏崇一. T型接头焊接残余应力分析和释放研究[D]. 秦皇岛: 燕山大学, 2020.
WEI C Y. Analysis and relaxation study of residual stress in T joint welding[D]. Qinhuangdao: Yanshan University, 2020.
[1] Zhen CHEN,Nengpeng CHEN,Qingjie RAN,Qiaomu WANG,Chaocheng WEI,Haowen JU. Fatigue life prediction of sheer wave vibroseis vibrator baseplate coupled with welding residual stress[J]. Chinese Journal of Engineering Design, 2025, 32(1): 102-111.
[2] Liyong TIAN,Jiahao ZHANG,Ning YU,Xiaohan YU,Shuo ZHANG. Study on fatigue life prediction and influencing factors of roadheader rotary platform[J]. Chinese Journal of Engineering Design, 2025, 32(1): 92-101.
[3] Shunhai XU,Xiaolei ZHOU,Guofang GONG,Haoceng HONG,Peng ZHANG,Shang LIU,Yalei FAN. Remanufacturability evaluation of piston pump based on remaining life[J]. Chinese Journal of Engineering Design, 2024, 31(5): 557-564.
[4] Qisong QI,Chenggang LI,Qing DONG,Yuhao CHEN,Hang XU. Prediction of load spectrum for crane life cycle and structural optimal design based on fatigue life[J]. Chinese Journal of Engineering Design, 2023, 30(3): 380-389.
[5] Chun-jian HUA,Dong-dong LI,Yi JIANG,Jian-feng YU,Ying CHEN. Study on fatigue life of shaft with V-notch under dual-frequency excitation[J]. Chinese Journal of Engineering Design, 2023, 30(1): 102-108.
[6] HAO Chun-yong, WANG Dong-liang, ZHENG Jin-yang, XU Ping, GU Chao-hua. Research on the relationship between burst pressure and fatigue life of composite hydrogen storage tank with aluminum liner[J]. Chinese Journal of Engineering Design, 2021, 28(5): 594-601.
[7] CHEN Zhen, LI Tao, XUE Xiao-wei, ZHOU Yang, JING Shuang, CHEN Yan. Fatigue reliability analysis and optimization of vibroseis vibrator baseplate based on fuzzy comprehensive evaluation method[J]. Chinese Journal of Engineering Design, 2021, 28(4): 415-425.
[8] CHEN Zhen, ZHOU Yang, JING Shuang, HUANG Zhi-qiang, CHEN Yan. Study on damage mechanism and fatigue life prediction of seismic vibrator baseplate[J]. Chinese Journal of Engineering Design, 2019, 26(6): 658-665.
[9] LI Song-mei, ZHENG Zhe, LI Shuai-shuai, CHANG De-gong. Structure and fatigue life analysis of damping type tripod universal joint[J]. Chinese Journal of Engineering Design, 2019, 26(5): 520-526.
[10] WANG Gang, HUANG Ling-hui, LIU Jin-jun. Research on dynamic stress and fatigue life for ultra-deep mine hoist drum[J]. Chinese Journal of Engineering Design, 2018, 25(6): 703-710.
[11] CAI Yu-qiang, ZHU Dong-sheng. Analysis of crankshaft fatigue life of high-speed crank press based on dynamics simulation[J]. Chinese Journal of Engineering Design, 2017, 24(6): 680-686.
[12] HUANG Zhi-qiang, PENG Xun, LI Gang. Analysis of multi-frequency response of vibroseis vibrator baseplate[J]. Chinese Journal of Engineering Design, 2017, 24(6): 648-654.
[13] REN Yuan, ZHANG Cheng-cheng, GAO Jing-yun, LI Meng-guang. Finite element simulation for the growth of the sealing labyrinth crack in turbine disc[J]. Chinese Journal of Engineering Design, 2016, 23(2): 152-159,165.
[14] SHEN Jie-bin, TANG Dong-lin. Study of field size parameter in stress field intensity approach[J]. Chinese Journal of Engineering Design, 2016, 23(1): 22-27.
[15] ZHANG Qiang, WANG Hai-jian, HU Nan. Study on injury and fatigue life forecast of gantry crane's girder under rising load[J]. Chinese Journal of Engineering Design, 2015, 22(5): 461-468.