Please wait a minute...
Chin J Eng Design  2023, Vol. 30 Issue (1): 57-64    DOI: 10.3785/j.issn.1006-754X.2023.00.005
Optimization Design     
Effect of eighth power stator curve on dynamic performance of vane pump
Yong-guo SUN1(),Dong XUE1,Jiao XU2,Shi-sheng LIU1,Jing-hang WU1,Xing-yu BAI1
1.School of Mechanical Power Engineering, Harbin University of Science and Technology, Harbin 150006, China
2.He Harbin Power Plant Valve Company Limited, Harbin 150066, China
Download: HTML     PDF(2172KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to reduce the vibration of vane pump in the process of crude oil exploitation, the operating impact caused by sudden change of acceleration should be eliminated as much as possible. The mathematical model of the stator internal cavity curve was obtained by deducing the octagonal curve equation. The transition curve was fitted by MATLAB software. In order to verify the dynamic performance of the vane pump, an experimental scheme was designed, and the variable speed and variable pressure experiments of the vane pump were carried out. The experimental results showed that at the speed of 500 r/min, the lift reached 23.14 m and the flow reached 2.44 m3/h, which met the design requirements of low speed; the vane pump had certain requirements for external pressure load, and its maximum value could not exceed 0.5 MPa. If this value was exceeded, the vane pump would lose its self-priming performance; with the increase of rotating speed, its flow and noise would increase; as the pressure load increased, the outlet flow increased first and then decreased, and the noise generally increased, but it rose slowly after the pressure load was greater than 0.25 MPa, and the flow in the pump gradually approached 0.At this time, the noise of the pump mainly came from the friction between the vane and the stator. The research results provide a reference for reducing the vibration and noise of the vane pump and further optimizing the structure of the vane pump.



Key wordsvane pump      stator transition curve      flow      lift     
Received: 01 May 2022      Published: 06 March 2023
CLC:  TH 311  
Cite this article:

Yong-guo SUN,Dong XUE,Jiao XU,Shi-sheng LIU,Jing-hang WU,Xing-yu BAI. Effect of eighth power stator curve on dynamic performance of vane pump. Chin J Eng Design, 2023, 30(1): 57-64.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2023.00.005     OR     https://www.zjujournals.com/gcsjxb/Y2023/V30/I1/57


八次方定子曲线对叶片泵动态性能的影响

为了降低叶片泵在原油开采过程中的振动,应尽量消除其由于加速度突变而造成的运行冲击。通过推导八次方曲线方程,得到定子内腔过渡曲线的数学模型。采用MATLAB软件对过渡曲线进行拟合。为了验证该叶片泵的动态性能,设计了实验方案,进行叶片泵变速和变压实验。实验结果表明:在500 r/min转速下,扬程达到23.14 m,流量达到2.44 m3/h,满足了低速设计要求;叶片泵对外部压力负载有一定的要求,其最大值不能超过0.5 MPa,若超过此值,叶片泵将失去自吸能力;随着转速的提高,其流量和噪声增大;随着压力负载增大,流量呈先上升后下降的趋势,噪声总体呈上升趋势,但在压力负载大于0.25 MPa后上升有所缓慢,泵内流量逐渐趋近于0,此时泵的噪声主要来源于叶片与定子的摩擦。研究结果为减小叶片泵的振动和噪声以及叶片泵结构的进一步优化提供了参考。


关键词: 叶片泵,  定子过渡曲线,  流量,  扬程 
Fig.1 Simulation results of stator internal cavity transition curve
Fig.2 Schematic diagram of double-acting sliding vane pump
设计指标转速/(r/min)
5001 450
流量/(m3/h)2.248.33
扬程/m615
Table 1 Design indexes of sliding vane pump
Fig.3 Dynamic performance experimental equipment of vane pump
Fig.4 Dynamic performance experimental table of vane pump
Fig.5 Hydraulic system of experimental table
设备名称技术参数

变频电机

变频器

5.5 kW, AMPS11, 380 V, 2 910 r/min,

30~1 809 Hz

CHRH455DEE/475DPE-1, 30~1 809 Hz

扭矩仪100 Nm, 最高转速为6 000 r/min
入口压力表0~0.2 MPa
出口压力表0~1.6 MPa
流量控制阀球阀DN50
涡轮流量计DN50, +24 VDC
噪声分贝仪PM6708数字声级计, 相对湿度≤80%,操作温度为0~40 ℃
管路DN50
油箱体积为250 L
Table 2 Technical parameters of experimental equipment
实验名称转速/(r/min)扭矩/(N·m)功率/kW流量/(m3/h)进口压力/kPa出口压力/MPa噪声/dB

1007.170.090.854-20.00.03469.3
2008.500.221.464-37.00.04887.6
3009.100.241.586-42.00.07698.5
4009.750.451.708-53.10.100106.8
50012.100.482.440-59.60.140108.0

25010.400.271.952-64.20.0597.5
25511.860.312.562-65.20.1099.8
25912.900.352.44-68.70.15101.4
26213.900.382.196-52.80.20104.2
26715.900.450.732-29.30.25107.6
26815.700.440.342-23.50.30107.8
28622.200.6701.30.50109.3
Table 3 Data of dynamic performance experiment of vane pump
Fig.6 Variation curve of inlet and outlet pressure of sliding vane pump with speed
Fig.7 Variation curve of inlet and outlet pressure of sliding vane pump with pressure load
Fig.8 Variation curve of flow and noise of sliding vane pump with rotating speed
Fig.9 Curve of flow and noise of sliding vane pump with pressure load
Fig.10 Stator wear position
[1]   罗亮.双作用水压叶片泵关键技术研究[D].武汉:华中科技大学,2013:1-2.
LUO Liang. Double-acting hydraulic vane pump key technology research[D]. Wuhan: Huazhong University of Science and Technology, 2013: 1-2.
[2]   黄波.滑片式叶片泵优化研究[D].北京:中国石油大学,2019:2-3.
HUANG Bo. Optimized design of sliding vane pump[D]. Beijing: China University of Petroleum, 2019: 2-3.
[3]   宋昌平,侯训波,张元良,等.低噪声叶片泵定子曲线的优化[J].组合机床与自动化加工技术,2007,12:82-85. doi:10.3969/j.issn.1001-2265.2007.12.025
SONG Chang-ping, HOU Xun-bo, ZHANG Yuan-liang, et al. Optimization on stator curve of vane pump for low noise[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2007, 12: 82-85.
doi: 10.3969/j.issn.1001-2265.2007.12.025
[4]   张作状,陈媛媛.高次定子曲线在双作用叶片泵降噪中的应用[J].煤矿机械,2009,30(5):185-186. doi:10.3969/j.issn.1003-0794.2009.05.080
ZHANG Zuo-zhuang, CHEN Yuan-yuan. Application about higher mode stator curve in double-acting vane pump noise reduction[J]. Coal Mine Machinery, 2009, 30(5): 185-186.
doi: 10.3969/j.issn.1003-0794.2009.05.080
[5]   李少年,魏列江,冀宏,等.改进定子曲线对高压子母叶片泵特性的影响[J].农业机械学报,2012,43(1):219-223. doi:10.6041/j.issn.1000-1298.2012.01.039
LI Shao-nian, WEI Lie-jiang, JI Hong, et al. Effect of improved stator curve on characteristic of high-pressure intra-vane type pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(1): 219-223.
doi: 10.6041/j.issn.1000-1298.2012.01.039
[6]   YANG Lian-fu. Structure optimization design of vane steering pump[C]//4th International Conference on Frontiers of Manufacturing and Design Science (ICFMD 2013), HongKong, 2014: 904-907. doi:10.4028/www.scientific.net/AMM.496-500.904
doi: 10.4028/www.scientific.net/AMM.496-500.904
[7]   LI Shao-nian, WEI Lie-jiang, WANG Zheng-rong, et al. Research on stator curve of double acting vane pump[C]//Proceedings of the Seventh International Conference on Fluid Power Transmission and Control, Hangzhou, 2009: 218-221.
[8]   LEI Hua, HU Hui-jun, LIU Yang. A dynamic analysis on the transition curve of profiled chamber metering pump[J]. Journal of Dynamic System, Measurement, and Control, 2016, 138(7): 1-10. doi: 10.1115/1.4033174
doi: 10.1115/1.4033174
[9]   CHENG Yi-qi, WANG Xin-hua. The theoretical performance analysis and numerical simulation of the cylindrical vane pump[J]. Arabian Journal for Science and Engineering, 2021, 46(3): 2947-2961.
[10]   刘潇潇,任牟华,车军,等.叶片泵叶片倾角和定子内曲线对叶片受力的影响[J].兰州交通大学学报,2019,36(5):30-34.
LIU Xiao-xiao, REN Mu-hua, CHE Jun, et al. Influence of blade angles and stator curve on force of blade in vane pump[J]. Journal of Lanzhou Jiaotong University, 2019, 36(5): 30-34.
[11]   王志强,温茂森,吴晓明,等.径向低速大扭矩水液压马达定子曲线分析[J].燕山大学学报,2011,35(6):493-500.
WANG Zhi-qiang, WEN Mao-sen, WU Xiao-ming, et al. Analysis of stator curve of low speed high torque water hydraulic motor with radial piston[J]. Journal of Yanshan University, 2011, 35(6): 493-500.
[12]   侯训波,孙玉清,宋昌平,等. 叶片泵定子曲线及叶片对流量脉动的影响[J].液压与气动,2008(8):57-60. doi:10.3969/j.issn.1000-4858.2008.08.021
HOU Xun-bo, SUN Yu-qing, SONG Chang-ping, et al. Analysis on cam ring & vane arousing flow fluctuation for hydraulic vane pump[J]. Chinese Hydraulics & Pneumatics, 2008(8): 57-60.
doi: 10.3969/j.issn.1000-4858.2008.08.021
[13]   张弛云,沈双达,金杨洁,等.叶片式转向助力泵定子曲线优化设计[J].机械设计与制造,2007(1):19-20.
ZHANG Chi-yun, SHEN Shuang-da, JIN Yang-jie, et al. The optimization for stator curve in power steering bump of vane[J]. Machinery Design & Manufacture, 2007(1): 19-20.
[14]   谭颖.汽车双作用叶片式动力转向油泵定子曲线一例[J].农业装备与车辆工程,2008(3):36-37. doi:10.3969/j.issn.1673-3142.2008.03.012
TAN Ying. Ring curve detail description of one kind of automotive hydraulic steering vane-type double action pump[J]. Agricultural Equipment & Vehicle Engineering, 2008(3): 36-37.
doi: 10.3969/j.issn.1673-3142.2008.03.012
[15]   HUANG Shi-biao. Innovative design and simulation for a noval vane pump[J]. Advance Materials Research, 2011, 328-330: 354-359.
[1] Qin LI,Yuwei LEI,Haoxiang SUN,Maolin DAI,Ke CHEN. Study on downhole flow field and chip removal performance of laser mechanical drill bit based on EDEM-Fluent coupling[J]. Chin J Eng Design, 2023, 30(4): 521-530.
[2] Xiao-hua ZHU,Cong LI,Wei-ji LIU,Bin TAN,Wen XU. Study on bottom hole thermal-fluid-solid coupling of PDC bit in strong abrasive formation[J]. Chin J Eng Design, 2022, 29(4): 446-455.
[3] Fu-qiang ZHAO,Te DU,Bao-yu CHANG,Zhi-gang NIU. Dynamics analysis and experimental research on leg lifting condition of limb-leg crawler foot mechanism[J]. Chin J Eng Design, 2022, 29(4): 474-483.
[4] Chao-qun MA,Kai ZHANG,Lin CHAI,Bao-lin LIU,Qin ZHOU. Research on internal flow field law of mechanical automatic vertical drilling tool actuator[J]. Chin J Eng Design, 2022, 29(3): 384-393.
[5] WU Jia-yi, YUE Yang, LI Jun-ye, JIN Zhi-jiang, QIAN Jin-yuan. Circumferential design of throttling window of main feed water regulating valve and its influence on flow characteristics[J]. Chin J Eng Design, 2022, 29(1): 74-81.
[6] WEI Qi, KUANG Yu-chun. Analysis of the influence of crank-link ratio on flow unevenness and piston inertia force of reciprocating pump[J]. Chin J Eng Design, 2021, 28(2): 190-194.
[7] QI Yu-ming, XIE Bing, WANG Gang, SU Wei-hua, LIU Zhao-hua. Research on structure design and control system of compact bicycle stereo garage[J]. Chin J Eng Design, 2020, 27(4): 524-532.
[8] HUANG Zhi-qiang, ZHANG Wen-yuan, MA Ya-chao, LI Gang, WU Xiao-hong. Research on influence of clearance between sliding shoe and guide plate and oil supply flow on lubrication and cooling status of 6000HP fracturing pump[J]. Chin J Eng Design, 2020, 27(1): 59-66.
[9] MA Chang-li, LIU Cong, MA Ben. Research on wave heave simulation and adaptive compensation strategy based on disturbance observer[J]. Chin J Eng Design, 2019, 26(6): 728-735.
[10] SUN Shun-miao, HE Yan, WU Peng-cheng, WANG Le-xiang, LING Jun-jie, LI Jun. Design and implementation of monitoring method for CNC machine tool operating data based on Storm flow processing[J]. Chin J Eng Design, 2019, 26(3): 245-251.
[11] ZHU Xiao-hua, FAN Cheng, LIU Shang. Liquid-solid two-phase flow erosion numerical simulation of neo-type hydraulic impactor[J]. Chin J Eng Design, 2019, 26(1): 87-94.
[12] ZHONG Qiang, LUO Zheng-shan. Coupled vibration response of marine riser caused by oil-gas-water three-phase slug flow[J]. Chin J Eng Design, 2019, 26(1): 95-101.
[13] BI Tao, SHI Duan-wei, WANG Ke. Load characteristic analysis and strength design for joint bolts of support pivots of tumble gate of ship lift in the Three Gorges[J]. Chin J Eng Design, 2018, 25(6): 655-660.
[14] YANG Wen-jun, HUI Li, ZHOU Song, MA Shao-hua, YUAN Hui-qun. Aerodynamic load analysis of compressor blade based on stator-rotor interaction effect[J]. Chin J Eng Design, 2018, 25(5): 567-575.
[15] YAN Xin-tao, MA Yu-ting, WU Yun-liang, WU Xiao-dong, WANG Ce. Research on measurement method for sample flow rate and focusing core flow of flow cytometer[J]. Chin J Eng Design, 2018, 25(4): 383-387,419.