Please wait a minute...
Chin J Eng Design  2022, Vol. 29 Issue (3): 384-393    DOI: 10.3785/j.issn.1006-754X.2022.00.044
Modeling, Simulation, Analysis and Decision     
Research on internal flow field law of mechanical automatic vertical drilling tool actuator
Chao-qun MA1,2(),Kai ZHANG1,2(),Lin CHAI1,2,Bao-lin LIU1,2,Qin ZHOU1,2
1.School of Engineering and Technology, China University of Geosciences, Beijing 100083, China
2.Key Laboratory of Deep GeoDrilling Technology, Ministry of Natural Resources, Beijing 100083, China
Download: HTML     PDF(2624KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In scientific drilling, the automatic vertical drilling technology can effectively control well deviation. However, the actuator of existing mechanical automatic vertical drilling tool needs a pump with large displacement to provide power. If the displacement is to be reduced, the internal structure of the actuator is required to have a good pressure maintaining effect. In order to solve the above problem, a new actuator with discharge gaps inside was proposed to improve its pressure retention performance, and the streamline distribution in its internal fluid zone was simulated by using the CFD (computational fluid dynamics) method to analyze the influence of discharge gaps on the pressure in the fluid zone, so as to verify the feasibility of using the gap discharge to achieve pressure retention; at the same time, through the sensitivity analysis of parameters such as the width and length of the discharge gap, the influence of different parameters on the pressure retention effect of the new actuator was obtained. The results showed that under the condition of small pump displacement, the new actuator still had good pressure retention effect, and the most obvious factor affecting the pressure retention effect was the discharge gap width; when the discharge gap width was less than 0.2 mm, the overall pressure of fluid zone in this actuator was small, that was, its pressure retention effect was good. It can be seen that the performance optimization of the actuator can be realized by setting up the discharge gap, which is of great significance to further improve the inclination correction ability of the mechanical automatic vertical drilling tool.



Key wordsautomatic vertical drilling tool      discharge gap      internal flow field      law analysis     
Received: 03 September 2021      Published: 05 July 2022
CLC:  TH 128  
Corresponding Authors: Kai ZHANG     E-mail: 804771505@qq.com;zhangkai66@cugb.edu.cn
Cite this article:

Chao-qun MA,Kai ZHANG,Lin CHAI,Bao-lin LIU,Qin ZHOU. Research on internal flow field law of mechanical automatic vertical drilling tool actuator. Chin J Eng Design, 2022, 29(3): 384-393.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2022.00.044     OR     https://www.zjujournals.com/gcsjxb/Y2022/V29/I3/384


机械式自动垂直钻具执行机构内部流场规律研究

在科学钻探中,利用自动垂直钻井技术能够有效控制井斜。但是,现有机械式自动垂直钻具的执行机构需要较大排量的泵机来提供动力。若要降低排量,则要求执行机构的内部结构有良好的保压效果。为解决上述问题,提出一种内部带有泄流缝隙的新型执行机构,以提升其保压性能,并利用CFD(computational fluid dynamics,计算流体动力学)方法对其内部流体区域的流线分布进行模拟,分析泄流缝隙对流体区域压强产生的影响,以验证利用缝隙泄流实现保压的可行性;同时,通过对泄流缝隙宽度、长度等参数的敏感性分析,得到不同参数对新型执行机构保压效果的影响。结果表明,在泵机排量较小的条件下,新型执行机构仍具有良好的保压效果,对保压效果影响最明显的因素为泄流缝隙宽度;当泄流缝隙宽度小于0.2 mm时,该执行机构内部流体区域的整体压强较大,即其保压效果良好。由此可知,开设泄流缝隙可实现执行机构的性能优化,这对进一步提升机械式自动垂直钻具的纠斜能力具有重要意义。


关键词: 自动垂直钻具,  泄流缝隙,  内部流场,  规律分析 
Fig.1 Structure diagram of mechanical automatic vertical drilling tool
Fig.2 Inclination correction principle of mechanical automatic vertical drilling tool
Fig.3 Structural profile of new actuator
Fig.4 Naming of critical plam surface and its corresponding actuator housing surface
Fig.5 Schematic diagram of working principle of new actuator
Fig.6 Schematic diagram of fluid zone in new actuator
Fig.7 Dimensional parameter setting for three-dimensional model of fluid zone in new actuator
Fig.8 Schematic diagram of palm opening angle
Fig.9 Variation curve of average pressure of fluid zone with palm opening angle
Fig.10 Comparison of flow field streamlines of fluid zone under different palm opening angles
Fig.11 Pressure nephogram of fluid zone with palm fully opened
Fig.12 Variation curve of average pressure of fluid zone with palm fully opened
Fig.13 Variation curve of average pressure of fluid zone with inlet diameter
Fig.14 Schematic diagram of inlet angle of fluid zone
Fig.15 Variation curve of average pressure of fluid zone with inlet angle
Fig.16 Variation curve of average pressure of fluid zone with discharge gap width
Fig.17 Schematic diagram of discharge gap length
Fig.18 Variation curve of averge pressure of fluid zone with discharge gap length
[1]   叶建良,张伟,谢文卫.我国实施大洋钻探工程的初步设想[J].探矿工程(岩土钻掘工程),2019,46(2):1-8. doi:10.12143/j.tkgc.2019.02.001
YE Jian-liang, ZHANG Wei, XIE Wen-wei. Preliminary thoughts on implementation of the ocean drilling project in China[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2019, 46(2): 1-8.
doi: 10.12143/j.tkgc.2019.02.001
[2]   吴旭东.井斜原因及其危害浅谈[J].科技信息,2012(6):377. doi:10.3969/j.issn.1001-9960.2012.06.333
WU Xu-dong. Discussion on the causes and hazards of borehole deviation[J]. Science and Technology Information, 2012(6): 377
doi: 10.3969/j.issn.1001-9960.2012.06.333
[3]   CHUR C, OPPELT J. Vertical drilling technology: a milestone in directional drilling[C]//SPE/IADC Drilling Conference, Amsterdam, Feb. 22-25, 1993. doi:10.2118/25759-ms
doi: 10.2118/25759-ms
[4]   CLAUS C, THOMAS B, BERNHARD E, et al. KTB-4 years experience at the limits of drilling technology[C]//SPE/IADC Drilling Conference, Amsterdam, Feb. 28-Mar. 2, 1995.
[5]   刘文忠,易炳刚,范宇,等.VertiTrak垂直钻井技术在高陡构造天东004-X3井的应用[J].钻采工艺,2010,33(6):36-39. doi:10.3969/j.issn.1006-768X.2010.06.000
LIU Wen-zhong, YI Bing-gang, FAN Yu, et al. Application of VertiTrak in the high-steep structures of Tiandong004-X3 well[J]. Drilling and Production Technology, 2010, 33(6): 36-39.
doi: 10.3969/j.issn.1006-768X.2010.06.000
[6]   张锦虹,宋玥,刘书勤,等.Power-V在克深102井膏盐岩层中的应用[J].石油钻采工艺,2015(6):13-17. doi:10.13639/j.odpt.2015.06.004
ZHANG Jin-hong, SONG Yue, LIU Shu-qin, et al. Application of Power-V in gypsum-salt rock [J]. Oil Drilling & Production Technology, 2015(6): 13-17.
doi: 10.13639/j.odpt.2015.06.004
[7]   王闻涛,王进全,王小通,等.全旋转推靠式自动垂直钻井工具的研制[J].石油机械,2015,43(8):47-50. doi:10.16082/j.cnki.issn.1001-4578.2015.08.010
WANG Wen-tao, WANG Jin-quan, WANG Xiao-tong, et al. Development of full rotation and push-the-bit type automatic vertical drilling tool[J]. China Petroleum Machinery, 2015, 43(8): 47-50.
doi: 10.16082/j.cnki.issn.1001-4578.2015.08.010
[8]   韩来聚,倪红坚,赵金海,等.机械式自动垂直钻井工具的研制[J].石油学报,2008,29(5):766-768. doi:10.7623/syxb200805025
HAN Lai-ju, NI Hong-jian, ZHAO Jin-hai, et al. Development of mechanical tool for automatic vertical drilling[J]. Acta Petrolei Sinica, 2008, 29(5): 766-768.
doi: 10.7623/syxb200805025
[9]   李立鑫,薛启龙,刘宝林,等.机械式静态双层推靠自动垂直钻具设计[J].中国石油大学学报(自然科学版),2017,41(4):91-98. doi:10.3969/j.issn.1673-5005.2017.04.012
LI Li-xin, XUE Qi-long, LIU Bao-lin, et al. A static mechanical automatic vertical drilling tool with double-layer positive pushing pistons for slim well drilling[J]. Journal of China University of Petroleum (Natural Science Edition), 2017, 41(4): 91-98.
doi: 10.3969/j.issn.1673-5005.2017.04.012
[10]   柴麟,张凯,刘宝林,等.自动垂直钻井工具分类及发展现状[J].石油机械,2020,48(1):1-11. doi:10.16082/j.cnk.ssn.1001-4578.2020.01.001
CHAI Lin, ZHANG Kai, LIU Bao-lin, et al. Classification and development status of automatic vertical drilling tools[J]. China Petroleum Machinery, 2020, 48(1): 1-11.
doi: 10.16082/j.cnk.ssn.1001-4578.2020.01.001
[11]   柴麟,张凯,张耀澎,等.小直径垂钻工具推力执行机构性能测试[J].探矿工程(岩土钻掘工程),2020,47(4):87-93. doi:10.12143/j.tkgc.2020.04.013
CHAI Lin, ZHANG Kai, ZHANG Yao-peng, et al. Performance test of the pushing actuator of the small diameter vertical drilling tool[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2020, 47(4): 87-93.
doi: 10.12143/j.tkgc.2020.04.013
[12]   冯定,王鹏,张红,等.旋转导向工具研究现状及发展趋势[J].石油机械,2021,49(7):8-15. doi:10.16082/j.cnki.issn.1001-4578.2021.07.002
FENG Ding, WANG Peng, ZHANG Hong, et al. Research status and development trend of rotary steerable system tool[J]. China Petroleum Machinery, 2021, 49(7): 8-15.
doi: 10.16082/j.cnki.issn.1001-4578.2021.07.002
[13]   王万宏.缝隙引流叶轮对低比转速离心泵性能的影响机理研究[D].镇江:江苏大学,2020:27-44. doi:10.37434/as2020.06.05
WANG Wan-hong. Mechanistic study of the effect of gap drainage impellers on the performance of low specific speed centrifugal pumps[D]. Zhenjiang: Jiangsu University, 2020: 27-44.
doi: 10.37434/as2020.06.05
[14]   赵伟国,路佳佳,赵富荣.基于缝隙射流原理的离心泵空化控制研究[J].浙江大学学报(工学版),2020,54(9):1785-1794. doi:10.3785/j.issn.1008-973X.2020.09.015
ZHAO Wei-guo, LU Jia-jia, ZHAO Fu-rong. Cavitation control of centrifugal pump based on gap jet principle[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(9): 1785-1794.
doi: 10.3785/j.issn.1008-973X.2020.09.015
[15]   刘汉儒,岳少原,王掩刚,等.串列叶栅缝隙射流对分离流动及叶栅性能影响的研究[J].推进技术,2018,39(12):2728-2736. doi:10.13675/j.cnki.tjjs.2018.12.011
LIU Han-ru, YUE Shao-yuan, WANG Yan-gang, et al. Investigation for effects of slot jet of tandem cascade on separation flow and cascade performance[J]. Journal of Propulsion Technology, 2018, 39(12): 2728-2736.
doi: 10.13675/j.cnki.tjjs.2018.12.011
[16]   柴麟,张凯,刘宝林,等.一种小直径取心式垂直钻井工具推力执行机构:CN201921119847.6[P].2020-06-05.
CHAI Lin, ZHANG Kai, LIU Bao-lin, et al. Thrust actuator of a small diameter coring vertical drilling tool: CN201921119847.6[P]. 2020-06-05.
[17]   李立鑫,薛启龙,刘宝林,等.机械式自动垂直钻具的纠斜行为及研究进展[J].西安石油大学学报(自然科学版),2018,33(1):90-97. doi:10.3969/j.issn.1673-064X.2018.01.015
LI Li-xin, XUE Qi-long, LIU Bao-lin, et al. Straightening behavior analysis and research progress of mechanical automatic vertical drilling tools[J]. Journal of Xi’an Shiyou University (Natural Science), 2018, 33(1): 90-97.
doi: 10.3969/j.issn.1673-064X.2018.01.015
[18]   李秋敏,刘白雁,陈新元,等.自动垂直钻具井下流场特性仿真分析[J].石油矿场机械,2008,37(8):10-13. doi:10.3969/j.issn.1001-3482.2008.08.002
LI Qiu-min, LIU Bai-yan, CHEN Xin-yuan, et al. Simulation analysis on the characteristics of the down-hole flow field in the automatic anti-deviation drilling system[J]. Oil Field Equipment, 2008, 37(8): 10-13.
doi: 10.3969/j.issn.1001-3482.2008.08.002
[19]   王福军.计算流体动力学分析:CFD软件原理与应用[M].北京:清华大学出版社,2004:185-187.
WANG Fu-jun. Computational fluid dynamics analysis: principle and application of CFD software[M]. Beijing: Tsinghua University Press, 2004: 185-187.
[20]   韩占忠,王敬,兰小平.Fluent:流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2010:138-140.
HAN Zhan-zhong, WANG Jing, LAN Xiao-ping. Fluent: example and application of fluid engineering simulation[M]. Beijing: Beijing Institute of Technology Press, 2010: 138-140.
[21]   CHELTON D B, SCHLAX M G, SAMELSON R M, et al. Global observations of large oceanic eddies[J]. Geophysical Research Letters, 2007, 34(15): L15606. doi:10.1029/2007gl030812
doi: 10.1029/2007gl030812
[22]   ZHENG L, WANG W, LI S. Feature-based streamline selection method for 2D flow fields[C]//2015 14th International Conference on Computer-Aided Design and Computer Graphics (CAD/Graphics), Xi’an, Aug. 26-28, 2015. doi:10.1109/cadgraphics.2015.48
doi: 10.1109/cadgraphics.2015.48
[23]   SALZBRUNN T, SCHEUERMANN G. Streamline predicates[J]. IEEE Transactions on Visualization and Computer Graphics, 2006, 12(6): 1601-1612. doi:10. 1109/tvcg.2006.104
doi: 10. 1109/tvcg.2006.104
[24]   杨文哲,苏晓磊,刘毅.卧轮式分级机内流场的“双旋涡”分布特性[J].工业技术创新,2021,8(2):111-118. doi:10.14103/j.issn.2095-8412.2021.04.020
YANG Wen-zhe, SU Xiao-lei, LIU Yi. The "Double Vortex" distribution characteristics of the flow field in the horizontal turbo air classifier[J]. Industrial Technology Innovation, 2021, 8(2): 111-118.
doi: 10.14103/j.issn.2095-8412.2021.04.020
[25]   张龙,张凯,柴麟,等.机械式自动垂直钻具上盘阀开口角度的优化分析[J].工程设计学报,2021,28(1):72-79,88. doi:10.3785/j.issn.1006-754X.2021.00.004
ZHANG Long, ZHANG Kai, CHAI Lin, et al. Optimization analysis of opening angle of upper disc valve of mechanical automatic vertical drilling tool[J]. Chinese Journal of Engineering Design, 2021, 28(1): 72-79, 88.
doi: 10.3785/j.issn.1006-754X.2021.00.004
[26]   张耀澎.垂直钻进系统推靠机构设计及模拟试验研究[D].北京:中国地质大学,2020:37-38.
ZHANG Yao-peng. Design and simulation test of a pushing unit of push-the-bit vertical drilling system[D]. Beijing: China University of Geosciences, 2020: 37-38.
[27]   卢志芳,刘白雁.自动垂直钻具液控导向机构的研制与动力学特性分析[J].机床与液压,2009,37(11):74-77. doi:10.3969/j.issn.1001-3881.2009.11.024
LU Zhi-fang, LIU Bai-yan. Development of hydraulic controlled steerable mechanism of automatic vertical drilling tools and its dynamics characteristic analysis[J]. Machine Tool and Hydraulic, 2009, 37(11): 74-77.
doi: 10.3969/j.issn.1001-3881.2009.11.024
[1] LI Ran-ran, ZHANG Kai, CHAI Lin, ZHANG Long, LIU Bao-lin, LI Guo-min. Research on control performance of mechanical automatic vertical drilling tool stabilization platform under stick-slip vibration[J]. Chin J Eng Design, 2021, 28(6): 746-757.
[2] ZHANG Long, ZHANG Kai, CHAI Lin, LI Guo-min, ZHOU Qin, LIU Bao-lin, LI Ran-ran. Optimization analysis of opening angle of upper disc valve of mechanical automatic vertical drilling tool[J]. Chin J Eng Design, 2021, 28(1): 72-79.