Please wait a minute...
Chin J Eng Design  2022, Vol. 29 Issue (3): 394-400    DOI: 10.3785/j.issn.1006-754X.2022.00.037
Whole Machine and System Design     
Research on ACFM detection method and detection system for weld defects of aluminum sheath of high voltage cable
Tao CHEN1(),Yuan-hang DONG1,Sai ZHANG1,Cheng Lü2,Li-hong ZHANG2,Chun-hui LIAO1
1.School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China
2.Hubei Special Equipment Inspection and Testing Research Institute, Wuhan 430077, China
Download: HTML     PDF(8663KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In view of the defects such as surface missed welding, buried incomplete penetration and weld penetration during the welding of aluminum sheath of argon arc welded high voltage cable, analternating current field measurement (ACFM) method for weld defects was proposed. Firstly, the ACFM model of weld defect of aluminum sheath of high voltage cable was established by using COMSOL multi-physical field simulation software, and the density distribution characteristics of induced current generated by an exciting coil on a U-shaped core and magnetic field signal characteristics of different types of defect areas of aluminum sheath weld were studied; secondly, an orthogonal receiving coil was designed to obtain the information of length and depth of defects, and the cable aluminum sheath weld specimen with defects and ACFM experimental platform were made; finally, the weld defects of different types of aluminum sheath were detected and the results were analyzed.The experimental results showed that ACFM method could be effectively used to detect the surface missed welding and weld penetration defects of aluminum sheath of high voltage cable with a thickness of 3 mm, and could effectively identify the buried incomplete penetration defects with a buried depth of 2 mm and a length, width and depth of 10, 0.3 and 1 mm respectively.The research results provide an important reference for the identification of weld defects and the evaluation of weld quality of aluminum sheath of high voltage cable.



Key wordscable aluminum sheath      weld      alternating current field measurement (ACFM)      non-destructive testing     
Received: 21 May 2021      Published: 05 July 2022
CLC:  TH 878.3  
Cite this article:

Tao CHEN,Yuan-hang DONG,Sai ZHANG,Cheng Lü,Li-hong ZHANG,Chun-hui LIAO. Research on ACFM detection method and detection system for weld defects of aluminum sheath of high voltage cable. Chin J Eng Design, 2022, 29(3): 394-400.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2022.00.037     OR     https://www.zjujournals.com/gcsjxb/Y2022/V29/I3/394


高压电缆铝护套焊缝缺陷ACFM检测方法及检测系统的研究

针对在氩弧焊型高压电缆铝护套焊接过程中易出现表面漏焊、埋藏未焊透和焊穿等缺陷的问题,提出了焊缝缺陷的交流电磁场检测(alternating current field measurement, ACFM)方法。首先,利用COMSOL多物理场仿真软件建立高压电缆铝护套焊缝缺陷ACFM模型,研究U形磁芯上的励磁线圈在不同类型铝护套焊缝缺陷区域产生的感应电流的密度分布特点和和磁场信号特征;其次,设计了可获取缺陷长度和深度信息的正交式接收线圈,制作了带有缺陷的电缆铝护套焊缝试件及ACFM实验平台;最后,进行了不同类型铝护套焊缝缺陷的检测及结果分析。实验结果表明,ACFM方法能够有效用于3 mm厚的高压电缆铝护套焊缝表面漏焊和焊穿缺陷的检测,并且能够有效识别埋深为2 mm,长、宽、深分别为10,0.3,1 mm的埋藏未焊透缺陷。研究结果为高压电缆铝护套焊缝缺陷的识别和焊缝质量的评价提供了重要参考。


关键词: 电缆铝护套,  焊缝,  交流电磁场检测,  无损检测 
Fig.1 Schematic of ACFM principle
Fig.2 ACFM simulation model of weld defects of aluminum sheath
材料电导率/(S/m)相对磁导率相对介电常数
空气111
3.03×10711
铜(线圈)6×10711
铁氧体(磁芯)01 0001
Table 1 Material parameters of ACFM simulation model of weld defects of aluminum sheath
Fig.3 Induced current density distribution in surface missed welding defect area
Fig.4 Detection path of weld defects
Fig.5 Magnetic field strength in surface missed welding defect area
Fig.6 Induced current density distribution in buried incomplete penetration defect area
Fig.7 Magnetic field strength in buried incomplete penetration defect area
Fig.8 Induced current density distribution in weld penetrating defect area
Fig.9 Magnetic field strength in weld penetrating defect area
Fig.10 ACFM experimental platform
Fig.11 Detection experiment of surface missed welding defect
Fig.12 Detection signal of buried incomplete penetration defect
Fig.13 Detection signal of weld penetrating defect
[1]   曹俊平,胡文堂,刘浩,等.基于超声导波的高压电缆铝护套检测技术可行性研究[J].机电工程,2018,35(1):10-15. doi:10.3969/j.issn.1001-4551.2018.01.002
CAO Jun-ping, HU Wen-tang, LIU Hao, et al. Feasibility study on testing technology of aluminum sheath of high voltage cable based on ultrasonic guided wave[J]. Mechanical and Electrical Engineering, 2018, 35(1): 10-15.
doi: 10.3969/j.issn.1001-4551.2018.01.002
[2]   刘刚,周凡,刘毅刚.高压单芯电缆铝护套下热阻的动态特性与实验研究[J].高电压技术,2013,39(3):712-718. doi:10.3969/j.issn.1003-6520.2013.03.030
LIU Gang, ZHOU Fan, LIU Yi-gang. Dynamic characteristic and experimental study on thermal resistance in aluminum sheath of high voltage single-core cable[J]. High Voltage Technology, 2013, 39 (3): 712-718.
doi: 10.3969/j.issn.1003-6520.2013.03.030
[3]   刘红文,于钦学,岳振国,等.高压电缆铝护套三种制作工艺的性能对比与分析[J].电线电缆,2011(1):21-25. doi:10.3969/j.issn.1672-6901.2011.01.007
LIU Hong-wen, YU Qin-xue, YUE Zhen-guo, et al Performance comparison and analysis of three manufacturing processes of aluminum sheath for high voltage cable[J]. Wires and Cables, 2011 (1): 21-25.
doi: 10.3969/j.issn.1672-6901.2011.01.007
[4]   孙倩.电缆金属铝护套的焊接工艺研究[J].科技与创新,2017(19):30-31. doi:10.1007/s12206-017-0235-9
SUN Qian. Study on welding technology of cable metal aluminum sheath[J]. Science and Technology &Innovation, 2017(19): 30-31.
doi: 10.1007/s12206-017-0235-9
[5]   陈涛,肖小齐,张赛,等.一种用于焊缝缺陷检测的旋转涡流探头设计[J].传感技术学报,2020(7):945-949. doi:10.3969/j.issn.1004-1699.2020.07.004
CHEN Tao, XIAO Xiao-qi, ZHANG Sai, et al. Design of a rotating eddy current probe for weld defect detection[J]. Journal of Sensing Technology, 2020(7): 945-949.
doi: 10.3969/j.issn.1004-1699.2020.07.004
[6]   CHEN T, XIAO X, ZHANG L, et al. Design of orthogonal eddy-current probe for weld crack detection of carbon-steel plate[J]. International Journal of Applied Electromagnetics and Mechanics, 2020, 64(1/4): 1347-1355. doi:10.3233/jae-209453
doi: 10.3233/jae-209453
[7]   张赛.电缆铝护套焊缝缺陷ACFM检测方法研究[D]. 武汉:湖北工业大学,2020:6-7.
ZHANG Sai. Study on ACFM testing method for weld defects of cable aluminum sheath[D]. Wuhan: Hubei University of Technology, 2020: 6-7.
[8]   孙立强,成永刚,高胜利.一种铝护套气密性实验密封装置:CN206974619U[P].2018-02-06.
SUN Li-qiang, CHENG Yong-gang, GAO Sheng-li. The utility model relates to an experimental sealing device for air tightness of aluminum sheath: CN206974619U[P]. 2018-02-06.
[9]   梁鸿生,刘庆丰,方永兴.电缆铝护套厚度在线测量的研究[J].西安理工大学学报,1998,14(4):347-352. doi:10.3969/j.issn.1006-4710.1998.04.004
LIANG Hong-sheng, LIU Qing-feng, FANG Yong-xing. Study on on-line measurement of cable aluminum sheath thickness[J]. Journal of Xi'an University of Technology, 1998, 14(4): 347-352.
doi: 10.3969/j.issn.1006-4710.1998.04.004
[10]   陈涛,张赛,肖小齐,等.跑道型差动式涡流探头设计及其性能研究[J].工程设计学报,2020,27(6):781-785. doi:10.3785/j.issn.1006-754X.2020.00.089
CHEN Tao, ZHANG Sai, XIAO Xiao-qi, et al. Design and performance study of runway differential eddy current probe[J]. Chinese Journal of Engineering Design, 2020, 27(6): 781-785.
doi: 10.3785/j.issn.1006-754X.2020.00.089
[11]   丁潇凡,朱学忠.用于电机位置检测的电涡流传感器电磁场仿真分析[J].电测与仪表,2018,55(11):101-106. doi:10.3969/j.issn.1001-1390.2018.11.017
DING Xiao-fan, ZHU Xue-zhong. Simulation analysis of electromagnetic field of new eddy current sensor used in motor position detection[J]. Electrical Measurement and Instrumentation, 2018, 55(11): 101-106.
doi: 10.3969/j.issn.1001-1390.2018.11.017
[12]   陈涛,曹恒,张赛,等.涡流检测在铝板超声缺陷检测盲区中的应用研究[J].传感器与微系统,2021,40(7):13-16.
CHEN Tao, CAO Heng, ZHANG Sai, et al. Application study of eddy-current detection in blind zone of ultrasonic defect testing for aluminum-plate[J]. Sensor and Micro System, 2021, 40(7): 13-16.
[13]   ZHENG Wen-pei, ZHANG Lai-bin, SU Yin-ao. Numerical simulation of a U shaped ACFM inducer[J]. Materials Transactions, 2015, 56(5): 743-748. doi:10.2320/matertrans.m2015005
doi: 10.2320/matertrans.m2015005
[14]   REN S K, ZHU Z B, LIN T H, et al. Design for the ACFM sensor and the signal processing based on wavelet de-noise[C]//2009 2nd International Congress on Image and Signal Processing, Tianjin, China, 17-19 Oct., 2009. doi:10.1109/cisp.2009.5301200
doi: 10.1109/cisp.2009.5301200
[15]   HASANZADEH R P R, SADEGHI S H H, RAVAN M, et al. A fuzzy alignment approach to sizing surface cracks by the AC field measurement technique[J]. NDT & E International, 2011, 44(1): 75-83. doi:10.1016/j.ndteint.2010.09.009
doi: 10.1016/j.ndteint.2010.09.009
[16]   AMINEH R K, RAVAN M, SADEGHI S H H, et al. Using AC field measurement data at an arbitrary liftoff distance to size long surface-breaking cracks in ferrous metals[J]. NDT and E International, 2008, 41(3): 169-177. doi:10.1016/j.ndteint.2007.10.002
doi: 10.1016/j.ndteint.2007.10.002
[17]   李伟,张传荣,陈国明,等.U型ACFM探头精确建模和实验测试[J].电子测量与仪器学报,2013,27(7):658-662. doi:10.3724/sp.j.1187.2013.00658
LI Wei, ZHANG Chuan-rong, CHEN Guo-ming, et al. Precise modeling and experimental testing of the U- shaped probe for ACFM[J]. Journal of Electronic Measurement and Instrument, 2013, 27(7): 658-662.
doi: 10.3724/sp.j.1187.2013.00658
[18]   赵海涛.基于交变磁场测量技术的金属表面缺陷检测系统的研究与实现[D].长沙:国防科学技术大学,2004: 55-64.
ZHAO Hai-tao. Research and implementation of metal surface defect detection system based on alternating magnetic field measurement technology[D]. Changsha: University of Defense Science and Technology, 2004: 55-64.
[19]   刘佳利.交变磁场测量成像技术的研究[D]. 长沙:国防科学技术大学,2010:40-54.
LIU Jia-li. Research on imaging technology of alternating magnetic field measurement[D]. Changsha: National University of Defense Science and Technology, 2010: 40-54.
[20]   王景林.ACFM技术的缺陷识别与量化反演系统设计及试验[D].南昌:南昌航空大学,2019:44-55.
WANG Jing-lin. Defect identification and quantitative inversion system design and test of ACFM technology [D]. Nanchang: Nanchang University of Aviation, 2019: 44-55.
[1] Xiaodong JI,Tianyu CHENG,Liang HUA,Xinsong ZHANG. Research on detection method of underwater welding quality based on acoustic signal recognition[J]. Chin J Eng Design, 2023, 30(5): 562-570.
[2] Jia ZHANG,Zhaoming ZHOU,Zhanghua LIAN,Kai LI,Zhi CHEN. Research on crack detection of butt welds in the cladding panel of spent fuel pool[J]. Chin J Eng Design, 2023, 30(3): 372-379.
[3] Yi-fan CHEN,Qian WU,Ling JIANG,Liang HUA. Detection method of post-weld residual stress treatment quality based on acoustic signal recognition[J]. Chin J Eng Design, 2022, 29(3): 272-278.
[4] CHEN Tao, ZHANG Sai, XIAO Xiao-qi, SONG Xiao-chun, LI Dong-lin, LIAO Chun-hui, TU Jun. Design and performance study of runway-type differential eddy-current probe[J]. Chin J Eng Design, 2020, 27(6): 781-785.
[5] ZHANG Jun-bao, HOU Hong-juan, LIU Jian, SUN Ding-ding, XIE Lei-lei. Research on rigid-flexible 3CD/2RPU-SPR friction stir welding robot[J]. Chin J Eng Design, 2020, 27(2): 172-181.
[6] ZENG Wei-jun, YU Guang-dong, LEI Heng-bo, WANG Zhong-zhou, SUN Hai-xuan. Design and analysis of large-size precision turntable shafting for phase contrast CT imaging[J]. Chin J Eng Design, 2018, 25(2): 223-229.
[7] ZHANG Qiang, WU Ze-guang, WU Ze-yang, WANG Hai-jian. Research on online testing and analysis of guide foot force of shearer[J]. Chin J Eng Design, 2017, 24(6): 694-701,716.
[8] LU Qing-hua, XU Cang-qiang. Design and analysis of turnover platform for welding robot[J]. Chin J Eng Design, 2017, 24(2): 211-216.
[9] YANG Guang-Wu, ZHAO Ke, XIAO Shou-Ne, ZHANG Wei-Hua. Nominal stress extraction of weld based on ratio of tension and bending[J]. Chin J Eng Design, 2011, 18(6): 423-427.
[10] WU Xiao, HUA Liang, GU Ju-Ping, WANG Sheng-Feng, ZHANG Qi, NI Ling. Research on welding torch precision positioning control system for welding mobile robot using ultrasonic motors[J]. Chin J Eng Design, 2010, 17(5): 372-376.
[11] LIANG Zhao-Feng, ZHOU Guang-Ping, MO Xi-Ping, LI Zheng-Zhong. Design of large cross-section block horns with slots for ultrasonic plastic welding[J]. Chin J Eng Design, 2009, 16(3): 200-204.
[12] XING Li, DONG Shi-Lin. Elastic finite element analyses and experiment research on welded spherical joints with square hollow sections[J]. Chin J Eng Design, 2007, 14(4): 329-333.