Please wait a minute...
Chin J Eng Design  2023, Vol. 30 Issue (5): 562-570    DOI: 10.3785/j.issn.1006-754X.2023.00.066
Theory and Method of Mechanical Design     
Research on detection method of underwater welding quality based on acoustic signal recognition
Xiaodong JI(),Tianyu CHENG(),Liang HUA,Xinsong ZHANG
College of Electrical Engineering, Nantong University, Nantong 226000, China
Download: HTML     PDF(4139KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Underwater welding is widely used in many fields, but its welding quality is difficult to guarantee. Aiming at the problems of high nonlinearity, strong parameter coupling and low detection efficiency in underwater welding process, a new method for underwater welding quality detection based on acoustic signal recognition was proposed. The method constructed a monitoring system based on acoustic signal acquisition underwater to collect the acoustic information during the welding process of weldments in real time, and built a double-weight neural network (DWNN) model through filtering and noise reduction processing and feature extraction for the acoustic signal. The model had excellent nonlinear fitting ability of high-dimensional data and could realize nonlinear mapping between multi-parameters of underwater welding and multi-features of acoustic signals, and it could still realize high-precision pattern recognition in the case of small samples. The underwater welding quality detection experiments were carried out with high strength and low carbon alloy steel—HSLA-115 steel as welding object. The results showed that the recognition accuracy of DWNN model applied to underwater welding quality detection could reach 100%. The research results can provide reference for the optimization of underwater welding process and the construction of underwater weldparts expert knowledge base.



Key wordsunderwater welding      acoustic signal      feature extraction      double-weight neural network     
Received: 02 March 2023      Published: 03 November 2023
CLC:  TG 456.5  
Corresponding Authors: Tianyu CHENG     E-mail: 1731571044@qq.com;chengtianyu518@163.com
Cite this article:

Xiaodong JI,Tianyu CHENG,Liang HUA,Xinsong ZHANG. Research on detection method of underwater welding quality based on acoustic signal recognition. Chin J Eng Design, 2023, 30(5): 562-570.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2023.00.066     OR     https://www.zjujournals.com/gcsjxb/Y2023/V30/I5/562


基于声信号识别的水下焊接质量检测方法研究

水下焊接的应用领域广泛,但其焊接质量难以保障。针对水下焊接处理过程中存在的非线性程度高、参数耦合性强以及检测效率低等问题,提出了一种新的基于声信号识别的水下焊接质量检测方法。该方法通过在水下构建基于声信号采集的监测系统,实时采集焊件焊接过程中的声信息,并通过对声信号进行滤波降噪处理和特征提取,构建双权值神经网络(double-weight neural network, DWNN)模型。该模型具有优秀的高维数据非线性拟合能力,可实现水下焊接多参数与声信号多特征之间的非线性映射,且在小样本情况下仍能实现高精度的模式识别。以高强度低碳合金钢——HSLA-115钢作为焊接对象,开展水下焊接质量检测实验。结果表明,DWNN模型应用于水下焊接质量检测的识别精度可达100%。研究结果可为水下焊接工艺的优化和水下焊件专家知识库的构建提供参考依据。


关键词: 水下焊接,  声信号,  特征提取,  双权值神经网络 
Fig.1 Underwater welding experiment platform
实验参数(焊接速度、焊接电流、板材厚度)水下焊接处理结果
1.2 m/min、110 A、6 mm合格
0.6 m/min、110 A、6 mm合格
0.6 m/min、140 A、6 mm不合格
1.2 m/min、110 A、8 mm不合格
1.2 m/min、140 A、8 mm合格
1.2 m/min、110 A、10 mm不合格
1.2 m/min、160 A、10 mm合格
1.2 m/min、160 A、12 mm不合格
0.6 m/min、160 A、12 mm合格
0.6 m/min、180 A、12 mm合格
Table 1 Measurement results of partial underwater welding experiments
Fig.2 Physical objects of underwater welded steel plate
Fig.3 Amplitude characteristic curve of Butterworth filter
Fig.4 Comparison of spectrogram of acoustic signal before and after filtering
Fig.5 Short-time energy of acoustic signal
Fig.6 Short-time average amplitude of acoustic signal
Fig.7 Short-time average zero crossing rate of acoustic signal
Fig.8 DWNN with fixed structure
Fig.9 Flow of DWNN algorithm introducing PSO
Fig.10 Structure of DWNN for underwater welding quality detection
Fig.11 Underwater welding quality recognition results based on different methods (100 groups of training samples)
Fig.12 Underwater welding quality recognition error based on different methods (100 groups of training samples)
识别模型平均误差最大误差均方误差
DWNN0.002 20.011 40.000 387
SVM0.075 20.988 30.011 039
BPNN0.062 50.876 10.008 856
Table 2 Error comparison of different underwater welding quality recognition models
Fig.13 Underwater welding quality recognition results based on different methods (20 groups of training samples)
Fig.14 Underwater welding quality recognition error based on different methods (100 groups of training samples)
[1]   郭俊良.局部干法水下镍基合金焊接工艺及性能研究[D].哈尔滨:哈尔滨工程大学,2020:11-12. doi:10.7498/aps.69.20191854
GUO J L. Research of underwater local dry welding process and properties of nickel-based alloy[D]. Harbin: Harbin Engineering University, 2020: 11-12.
doi: 10.7498/aps.69.20191854
[2]   岳国柱,王国安,徐武彬,等.焊接方向对H型构件焊后变形的影响研究[J].机械设计与制造,2022(11):122-125. doi:10.3969/j.issn.1001-3997.2022.11.026
YUE G Z, WANG G A, XU W B, et al. Research on the influence of welding direction on the deformation of H-shaped members[J]. Machinery Design & Manufacture, 2022(11): 122-125.
doi: 10.3969/j.issn.1001-3997.2022.11.026
[3]   Creaform.海上风电导管架的焊接检测和无损检测[J]. 现代制造,2022():56-57.
Creaform. Welding test and nondestructive test of offshore wind turbine jacket[J]. Maschinen Markt, 2022(): 56-57.
[4]   肖书浩,陈涵,吴蕾.一种陶质焊接衬垫产品质量检测方法[J].机械设计与制造,2021(11):139-142,146. doi:10.3969/j.issn.1001-3997.2021.11.032
XIAO S H, CHEN H, WU L. Method for detecting quality of ceramic welding gasket product[J]. Machinery Design & Manufacture, 2021(11): 139-142, 146.
doi: 10.3969/j.issn.1001-3997.2021.11.032
[5]   KIM S, HWANG I, KIM D Y, et al. Weld-quality prediction algorithm based on multiple models using process signals in resistance spot welding[J]. Metals, 2021, 11(9): 1459.
[6]   房海基,吕波,张艳喜,等.焊接过程声信号在线检测技术现状与展望[J].精密成形工程,2022,14(1):165-172. doi:10.3969/j.issn.1674-6457.2022.01.021
FANG H J, LÜ B, ZHANG Y X, et al. Status and prospect of on-line acoustic signal detection technology in welding[J]. Journal of Netshape Forming Engineering, 2022, 14(1): 165-172.
doi: 10.3969/j.issn.1674-6457.2022.01.021
[7]   刘亮.基于多信息融合的GTAW过程熔透状态识别及预测控制[D].上海:上海交通大学,2021:3-5.
LIU L. Penetration state recognition and predictive control of GTAW process based on multi-information fusion[D]. Shanghai: Shanghai Jiaotong University, 2021: 3-5.
[8]   兰兴川.基于神经网络优化案例推理的焊接质量检测方法研究[D].重庆:重庆邮电大学,2021:13-15.
LAN X C. Research on welding quality inspection method based on neural network optimization case-based reasoning[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2021: 13-15.
[9]   王春香,郝林文,王耀,等.基于GA-BP神经网络的散乱点云孔洞自动修补[J].工程设计学报,2021,28(2):155-162. doi:10.3785/j.issn.1006-754X.2021.00.029
WANG C X, HAO L W, WANG Y, et al. Automatic repair of scattered point cloud hole based on GA-BP neural network[J]. Chinese Journal of Engineering Design, 2021, 28(2): 155-162.
doi: 10.3785/j.issn.1006-754X.2021.00.029
[10]   王守觉,李兆洲,陈向东,等.通用神经网络硬件中神经元基本数学模型的讨论[J].电子学报,2001,29(5):577-580. doi:10.3321/j.issn:0372-2112.2001.05.001
WANG S J, LI Z Z, CHEN X D, et al. Discussion on the basic mathematical models of neurons in general purpose neurocomputer[J]. Acta Electronica Sinica, 2001, 29(5): 577-580.
doi: 10.3321/j.issn:0372-2112.2001.05.001
[11]   庞轶环,胡志忠.一种分数阶巴特沃斯滤波器的有源电路设计[J].电子学报,2018,46(5):1160-1165. doi:10.3969/j.issn.0372-2112.2018.05.021
PANG Y H, HU Z Z. Active circuit design of a fractional order Butterworth filter[J]. Acta Electronica Sinica, 2018, 46(5): 1160-1165.
doi: 10.3969/j.issn.0372-2112.2018.05.021
[12]   HUA L, ZHENG C W, GU J P, et al. Laser arc sound signal processing and welding status recognition based on geometric learning[C]//International Conference on Manufacturing Science & Engineering, Paris: Atlantis Press, 2015: 1383-1393.
[13]   曹宇,赵星涛.一种新型双权值人工神经元网络的数据拟合研究[J].电子学报,2004,32(10):1671-1673. doi:10.3321/j.issn:0372-2112.2004.10.019
CAO Y, ZHAO X T. Data fitting based on a new double weights neural network[J]. Acta Electronica Sinica, 2004, 32(10): 1671-1673.
doi: 10.3321/j.issn:0372-2112.2004.10.019
[14]   李树松.粒子群算法在优化问题中的应用研究[J].科学技术创新,2020(32):103-104. doi:10.3969/j.issn.1673-1328.2020.32.047
LI S S. Application of particle swarm optimization algorithm[J]. Scientific and Technological Innovation, 2020(32): 103-104.
doi: 10.3969/j.issn.1673-1328.2020.32.047
[15]   郑煜.基于PSO和MSR的微弱信号检测方法研究[J].机电工程,2022,39(3):362-367. doi:10.3969/j.issn.1001-4551.2022.03.012
ZHENG Y. Weak signal detection method based on PSO and MSR[J]. Journal of Mechanical & Electrical Engineering, 2022, 39(3): 362-367.
doi: 10.3969/j.issn.1001-4551.2022.03.012
[16]   杨寒雨,赵晓永,王磊.数据归一化方法综述[J].计算机工程与应用,2023,59(3):13-22. doi:10.3778/j.issn.1002-8331.2207-0179
YANG H Y, ZHAO X Y, WANG L. A review of data normalization methods[J]. Computer Engineering and Applications, 2023, 59(3): 13-22.
doi: 10.3778/j.issn.1002-8331.2207-0179
[17]   张乐天,张莉,宋倩,等.改进粒子群算法的单杆柔性臂振动抑制方法研究[J/OL].机械科学与技术,2022:1-6(2022-10-14)[2023-03-02]..
ZHANG L T, ZHANG L, SONG Q, et al. Research on optimal control method of single flexible manipulator by improved particle swarm optimization algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2022: 1-6 (2022-10-14)[2023-03-02]. .
[18]   魏海茹,李冬梅,褚红瑞,等.基于改进粒子群算法的暴雨天气实时预警方法[J].信息技术,2022,46(11):95-99,105.
WEI H R, LI D M, CHU H R, et al. Real-time rainstorm warning method based on improved particle swarm optimization[J]. Information Technology, 2022, 46(11): 95-99, 105.
[19]   颜志浩.基于分阶段改进组合策略的粒子群优化算法研究[D].武汉:华中科技大学,2020:27-29.
YAN Z H. Study on particle swarm optimization algorithm based on the combinatorial strategy of phased improvement[D]. Wuhan: Huazhong University of Science and Technology, 2020: 27-29.
[20]   武娇,洪彩凤,顾永春,等.基于类邻域字典的线性回归文本分类[J].计算机工程,2021,47(8):93-99,108.
WU J, HONG C F, GU Y C, et al. Linear regression text classification based on class-wise nearest neighbor dictionary[J]. Computer Engineering, 2021, 47(8): 93-99, 108.
[1] Meng LI,Zong-jun YIN. Research on comprehensive quality assessment method for parts[J]. Chin J Eng Design, 2022, 29(4): 410-418.
[2] Yi-fan CHEN,Qian WU,Ling JIANG,Liang HUA. Detection method of post-weld residual stress treatment quality based on acoustic signal recognition[J]. Chin J Eng Design, 2022, 29(3): 272-278.
[3] WANG Chun-Xiang, LI Le, WANG Jian-Guo. Geometric reverse resolution and model reconstruction of excavator dipper teeth based on feature extraction[J]. Chin J Eng Design, 2010, 17(3): 211-214.