Please wait a minute...
Chinese Journal of Engineering Design  2019, Vol. 26 Issue (6): 728-735    DOI: 10.3785/j.issn.1006-754X.2019.00.006
Modeling, Simulation, Analysis, and Decision     
Research on wave heave simulation and adaptive compensation strategy based on disturbance observer
MA Chang-li1, LIU Cong2, MA Ben3
1.Naval of Armament, Beijing 100161, China
2.China Aerospace Academy of Systems Science and Engineering, Beijing 100089, China
3.Suzhou Research Institute, Institute of Electronics, Chinese Academy of Sciences, Suzhou 215123, China
Download: HTML     PDF(2989KB)
Export: BibTeX | EndNote (RIS)      

Abstract  The rapid upgrade of marine equipment makes the sea hoisting widely used, but the hoisting equipment is susceptible to wind and waves, which reduces the control accuracy of system. To improve the control accuracy of marine hoisting system,an adaptive backstepping compensation strategy for wave heave based on disturbance observer is proposed. Taking the wave heave compensation system as the research object, the tracks of ship heave motion and the nonlinear model of the electro-hydraulic lifting system in the third-level sea condition were deduced. Ship heave motion was simulated on wave simulation platform, and the nonlinear error of the electro-hydraulic lifting system was suppressed by an adaptive backstepping compensation strategy based on the disturbance observer. The stability of the adaptive backstepping compensation strategy was proved by Lyapunov theory, and the controller performance was verified by simulation and test. Test results showed that the adaptive backstepping compensation strategy based on the disturbance observer had higher control accuracy than the traditional PID (proportion integration differentiation) controller. Aiming at the control system of marine hoisting equipment, the influence of external disturbance and system nonlinear disturbance on the controller can be effectively restrained by the adaptive backstepping compensation strategy based on the disturbance observer, so that the position compensation accuracy of heave motion of marine hoisting equipment can be increased.

Key wordswave compensation      electro-hydraulic lifting system      adaptive control      interference suppression     
Received: 08 July 2019      Published: 28 December 2019
CLC:  TH 137  
Cite this article:

MA Chang-li, LIU Cong, MA Ben. Research on wave heave simulation and adaptive compensation strategy based on disturbance observer. Chinese Journal of Engineering Design, 2019, 26(6): 728-735.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2019.00.006     OR     https://www.zjujournals.com/gcsjxb/Y2019/V26/I6/728


基于干扰观测器的波浪升沉模拟及自适应补偿策略研究

海洋装备的快速升级使得海上吊装应用广泛,但吊装设备易受风浪影响,导致系统控制精度降低。为提高海上吊装设备的控制精度,提出了基于干扰观测器的波浪升沉自适应反步补偿策略。以波浪升沉补偿系统为研究对象,对三级海况下的船舶升沉运动轨迹及其电液提升系统的非线性模型进行推导;利用波浪模拟平台模拟船舶的升沉运动,采用基于干扰观测器的自适应反步补偿策略对电液提升系统的非线性误差进行抑制;通过Lyapnov判据验证自适应反步补偿策略的稳定性,并通过仿真和试验对控制器性能进行验证。试验结果表明,相较于传统的PID(proportion integration differentiation,比例积分微分)控制策略,基于干扰观测器的波浪升沉自适应反步补偿策略具有更好的控制效果。对于海上吊装设备的控制系统,基于干扰观测器的自适应反步补偿策略可有效地抑制外界干扰及系统非线性干扰对控制器的影响,提高对海上吊装设备升沉运动的位置补偿精度。

关键词: 波浪补偿,  电液提升系统,  自适应控制,  干扰抑制 
[1] 王军政, 赵江波, 汪首坤. 电液伺服技术的发展与展望[J].液压与气动,2014(5):1-12. doi: 10.11832/j.issn.1000-4858.2014.05.001 WANG Jun-zheng, ZHAO Jiang-bo, WANG Shou-kun. The development and future trends of electro-hydraulic servo technology[J]. Chinese Hydraulics & Pneumatics, 2014 (5): 1-12.
[2] GUO K, WEI J, FANG J, et al. Position tracking control of electro-hydraulic single-rod actuator based on an extended disturbance observer[J]. Mechatronics, 2015, 27: 47-56. doi: 10.1016/j.mechatronics.2015.02.003
[3] CHENG G, ZHU S A. Derivative and integral sliding mode adaptive control for a class of nonlinear system and its application to an electro-hydraulic servo system[J]. Proceedings of the CSEE, 2005(4): 105-110. doi: 10.13334/j.0258-8013.pcsee.2005.04.019
[4] LAINIOTIS D G, PLATANIOTIS K N, MENON D, et al. Adaptive heave compensation via dynamic neural networks[C]// Proceedings of OCEANS '93, Victoria, BC, Oct. 18-21, 1993. doi:10.1109/OCEANS.1993.326005
[5] LAINIOTIS D G, ANAGNOSTOU K E. A new per-sample partitioning filter[J]. Signal Processing, 1987, 12(1): 27-47. doi: 10.1016/0165-1684(87)90080-6
[6] EL-HAWARY F, MBAMALU G A N. Dynamic heave compensation using robust estimation techniques[J]. Computers & Electrical Engineering, 1996, 22(4): 257-273. doi: 10.1016/0045-7906(96)00003-1
[7] EL-HAWARY F, AMINZADEH F, MBAMALU G A N. Computational experience with the generalized kalman filter for dynamic heave compensation[C]// Oceans '92. Mastering the Oceans Through Technology, Newport, RI: IEEE, 1992: 271-276. doi: 10.1109/OCEANS. 1992.612701
[8] KORDE U A. Active heave compensation on drill-ships in irregular waves[J]. Ocean Engineering, 1998, 25(7): 541-561. doi:10. 1016/s0029-8018(97)00028-0
[9] DO K D, PAN J. Nonlinear control of an active heave compensation system[J]. Ocean Engineering, 2008, 35(5/6): 558-571. doi: 10. 1016/j.oceaneng.2007.11.005
[10] DO K D, PAN J. Control of ships and underwater vehicles[M]. London: Springer, 2009:1-402. doi:10.1007/978-1-84882-730-1
[11] DO K D. Formation tracking control of unicycle-type mobile robots[C]// IEEE International Conference on Robotics and Automation, Roma: IEEE, 2007: 2391-2396. doi:10.1109/ROBOT.2007.363677
[12] NEUPERT J, MAHL T, HAESSIG B, et al. A heave compensation approach for offshore cranes[C]// American Control Conference, Seattle: IEEE, 2008: 538-543. doi:10.1109/ACC. 2008.4586547
[13] 席雷平, 陈自力, 齐晓慧. 基于非线性干扰观测器的机械臂自适应反演滑模控制[J].信息与控制,2013,42(4):470-477. doi:10.3724/SP.J.1219.2013.00470 XI Lei-ping, CHEN Zi-li, QI Xiao-hui. Adaptive backstepping sliding mode control for robotic manipulator with nonlinear disturbance observer[J]. Information and Control, 2013, 42(4): 470-477.
[14] 杨立一. 基于神经网络干扰观测器的终端滑模飞行控制设计[J].机械工程与自动化,2012 (4):152-154,157. doi:10.3969/j.issn.1672-6413. 2012.04.063 YANG Li-yi. Terminal sliding mode flight control design based on neural network disturbance observer[J]. Mechanical Engineering & Automation, 2012 (4): 152-154, 157.
[15] 刘柏廷, 吴云洁, 黄延福. 基于模糊干扰观测器的自适应反演滑模控制研究[J].系统仿真学报,2011,23(8):1677-1680. doi:10.16182/j.cnki. joss.2011.08.049 LIU Bo-ting, WU Yun-jie, HUANG Yan-fu. Research of adaptive backstepping sliding mode controller based on fuzzy disturbance observer[J]. Journal of System Simulation, 2011, 23(8): 1677-1680.
[16] 崔洋培, 吴庆宪, 陈谋. 基于滑模干扰观测器的空空导弹三维预测制导律设计[J].航天控制, 2015,33(2):3-8. doi:10.3969/j.issn.1006-3242. 2015.02.001 CUI Yang-pei, WU Qing-xian, CHEN Mou. Design of three-dimensional predictive guidance law for air-to-air missiles based on sliding mode disturbance observer[J]. Aerospace Control, 2015, 33(2): 3-8.
[17] 李继东. 电液伺服并联六自由度船舶模拟器控制研究[D].秦皇岛:燕山大学机械工程学院,2015:1-122. LI Ji-dong. Research on control of 6-DOF ship simulator with electro-hydraulic servo parallel connection[D]. Qinhuangdao: Yanshan University, School of Mechaical Engineering, 2015: 1-122.
[18] 汪亭玉, 梁忠诚. 一种模拟波浪中船载光通信机运动的实验平台[J].中国造船,2009,50(4):127-134. doi:10.3969/j.issn.1000-4882.2009.04. 017 WANG Ting-yu, LIANG Zhong-cheng. An experimental platform of ship movement simulation for free space optical communication[J]. Shipbuilding of China, 2009, 50(4): 127-134.
[1] CHEN Hao, WU Ding-ding, RAO Guo-xi, ZHAO Xu-chang. Design of adaptive control system of electric load simulation system[J]. Chinese Journal of Engineering Design, 2017, 24(2): 217-224.
[2] LIU Zhi-guang, YU Fei, ZHANG Liang, LI Tie-jun, AN Zhan-fa. Force tracking research for robot based on fuzzy adaptive impedance control algorithm[J]. Chinese Journal of Engineering Design, 2015, 22(6): 569-574.
[3] MA Ming-Zhi, RUI Yan-Nian, ZHANG Fei, QIAO Dong-Dong. Three axis parallel robot control system design based on the extension adaptive theory[J]. Chinese Journal of Engineering Design, 2012, 19(1): 53-56.
[4] LIU Feng, GONG Guo-Fang, SHI Yuan-Qi, ZHU Bei-Dou. Monitoring system of shield tunneling machine based on adaptive control technology[J]. Chinese Journal of Engineering Design, 2010, 17(4): 302-306.
[5] LI Ming, HU Xian-Zhi, FU Hui, HUANG Hui-Juan. Research on temperature control strategy of electric heating stove[J]. Chinese Journal of Engineering Design, 2007, 14(6): 482-485.