Please wait a minute...
Chinese Journal of Engineering Design  2019, Vol. 26 Issue (6): 736-742    DOI: 10.3785/j.issn.1006-754X.2019.00.005
Whole Machine and System Design     
Design of structure and control system for a rotational orthosis for walking with arm swing
MU Zai-le1,2, FANG Juan1,2,3, CHEN Long-fei1,2, ZHANG Qiu-ju1,2
1.School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
2.Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment Technology, Wuxi 214122, China
3.Institute of Rehabilitation and Performance Technology (IRPT), Bern University of Applied Sciences, Burgdorf 3400, Switzerland
Download: HTML     PDF(2932KB)
Export: BibTeX | EndNote (RIS)      

Abstract  In order to better assist stroke patients in early rehabilitation, a rotational orthosis for walking with arm swing is developed based on the theory of interlimb neural coupling. Firstly, according to the theory of rehabilitation medicine, the structures of upper and lower limb rehabilitation devices were designed, and the mechanical structures of the ankle joint rehabilitation device and the lower limb length adjusting device were introduced in detail. Then, the position closed-loop control system was established by the pole-placement approach to realize the passive linkage motion of the rotational orthosis for walking with arm swing. Finally, four able-bodied participants were recruited to test the orthosis. The experimental results showed that the rotational orthosis for walking with arm swing achieved synchronous passive motion of joints of upper and lower limbs, and every joint tracked the target trajectory well with the error not exceed 1.50°. The orthosis achieved linkage motion of the bilateral shoulder, hip, knee and ankle joints, which was believed to be efficient for the early gait rehabilitation for stroke patients.

Key wordsrotational orthosis for walking with arm swing      pole-placement      passive motion     
Received: 02 July 2019      Published: 28 December 2019
CLC:  TH-39  
Cite this article:

MU Zai-le, FANG Juan, CHEN Long-fei, ZHANG Qiu-ju. Design of structure and control system for a rotational orthosis for walking with arm swing. Chinese Journal of Engineering Design, 2019, 26(6): 736-742.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2019.00.005     OR     https://www.zjujournals.com/gcsjxb/Y2019/V26/I6/736


上下肢康复机器人的结构与控制系统设计

为更好地辅助中风偏瘫患者进行早期康复治疗,基于上下肢运动神经耦合理论,研制了一款上下肢康复机器人。首先,依据康复医学相关理论对上肢和下肢康复装置进行结构设计,并对下肢康复装置中的踝关节康复装置和下肢长度调整装置的机械结构进行详细介绍。然后,采用极点配置法建立位置闭环控制系统,实现上下肢康复机器人的被动联动运动。最后,招募4名健康的测试者进行上机测试。实验结果表明,该机器人实现了上下肢关节同步被动运动,且上下肢各关节运动轨迹误差不超过1.50°,说明其运动轨迹跟踪效果良好。该上下肢康复机器人可以实现双侧肩、髋、膝和踝关节共8个关节的联动运动,有望为偏瘫患者提供更好的早期步态康复治疗。

关键词: 上下肢康复机器人,  极点配置法,  被动运动 
[1] 帅记焱, 刘雅丽. 运动再学习疗法对脑卒中偏瘫患者功能恢复的疗效观察 [J]. 中国康复,2013,28(6):437-438. doi:10.3870/zgkf.2013.06.010 SHUAI Ji-yan, LIU Ya-li. Effect of motor relearning programme on the functional recovery of hemiplegic patients after stroke[J]. Chinese Journal of Rehabilitation, 2013, 28(6): 437-438.
[2] 赵雅宁, 郝正玮, 李建民, 等. 下肢康复训练机器人对缺血性脑卒中偏瘫患者平衡及步行功能的影响[J]. 中国康复医学杂志,2012,27(11):1015-1020. doi: 10.3969/j. issn.1001-1242.2012.11.007 ZHAO Ya-ning, HAO Zheng-wei, LI Jian-min, et al. The effect of Lokomat lower limb gait training rehabilitation robot on balance function and walking ability in hemiplegic patients after ischemic stroke[J]. Chinese Journal of Rehabilitation Medicine, 2012, 27(11): 1015-1020.
[3] COLOMER C, BALDOV A, TORROM S, et al. Efficacy of Armeo? Spring during the chronic phase of stroke. Study in mild to moderate cases of hemiparesis[J]. Neurología, 2013, 28(5): 261-267. doi: 10.1016/j.nrleng. 2012.04.017
[4] KLEIN J, SPENCER S, ALLINGTON J, et al. Optimization of a parallel shoulder mechanism to achieve a high-force, low-mass, robotic-arm exoskeleton[J]. IEEE Transactions on Robotics, 2010, 26(4): 710-715. doi: 10.1109/tro.2010.2052170
[5] RICHARDSON R, BROWN M, BHAKTA B, et al. Design and control of a three degree of freedom pneumatic physiotherapy robot[J]. Robotica, 2003, 21(6): 589-604. doi:10.1017/S0263574703005320
[6] 吴青聪, 王兴松, 吴洪涛, 等. 上肢康复外骨骼机器人的模糊滑模导纳控制[J]. 机器人,2018,40(4):67-75. doi: 10.13973/j.cnki.robot.18093 WU Qing-cong, WANG Xing-song, WU Hong-tao, et al. Fuzzy sliding mode admittance control of the upper limb rehabilitation exoskeleton robot[J]. Robot, 2018, 40(4): 67-75.
[7] HIDLER J, WISMAN W, NECKEL N. Kinematic trajectories while walking within the Lokomat robotic gait-orthosis[J]. Clinical Biomechanics, 2008, 23(10): 1251-1259. doi:10.1016/j.clinbiomech.2008.08.004
[8] SUSANNA F, JAN M, TANYA H S, et al. Gait training with the newly developed 'LokoHelp'-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study[J]. Brain Injury, 2008, 22(7/8): 625-632. doi:10.1080/02699050801941771
[9] ESQUENAZI A, PACKEL A. Robotic-assisted gait training and restoration[J]. American Journal of Physical Medicine & Rehabilitation, 2012, 91(11): S217-S231. doi: 10.1097/PHM.0b013e31826bce18
[10] 李晓飞. 下肢康复机器人的设计及控制策略研究[D]. 哈尔滨:哈尔滨工业大学机电工程学院, 2016:41-59. LI Xiao-fei. Design and control strategy of lower limb rehabilitation robot[D]. Harbin: Harbin Institute of Technology, School of Mechatronics Engineering, 2016:41-59.
[11] 李峰, 吴智政, 钱晋武. 下肢康复机器人步态轨迹自适应控制[J]. 仪器仪表学报,2014,35(9):2027-2036. doi: 10.3969/j.issn.0254-3087.2014.09.014 LI Feng, WU Zhi-zheng, QIAN Jin-wu. Trajectory adaptation control for lower extremity rehabilitation robot[J]. Chinese Journal of Scientific Instrument, 2014, 35(9): 2027-2036.
[12] Lü X, YANG C, LI X, et al. Passive training control for the lower limb rehabilitation robot[C]// 2017 IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Aug. 6-9, 2017. doi:10.1109/ICMA.2017.8015936
[13] DIETZ V, FOUAD K, BASTIAANSE C M. Neuronal coordination of arm and leg movements during human locomotion[J]. European Journal of Neuroscience, 2002, 14(11): 1906-1914. doi:10.1046/j.0953-816x.2001.01813.x
[14] MU Z, FANG J, ZHANG Q. Admittance control of the ankle mechanism in a rotational orthosis for walking with arm swing [C]// IEEE International Conference on Rehabilitation Robotics, Toronto, IEEE, 2019: 709-714.doi:10.1109/icorr.2019.8779408
[15] 方娟, 谢叻, 杨国源. 一种模仿行走动力模式的康复气垫鞋:CN104146850A [P]. 2014-11-19. FANG Juan, XIE Le, YANG Guo-yuan. A rehabilitation air-cushion shoe for imitating walking power mode: CN104146850A [P]. 2014-11-19.
[16] 燕铁斌. 骨科康复评定与治疗技术[M]. 北京:人民军医出版社,2011:321-325. YAN Tie-bin. Rehabilitation evaluation and treatment techniques in orthopaedics [M]. Beijing: People's Military Medical Press, 2011: 321-325.
[17] NEPTUNE R R, KAUTZ S A, ZAJAC F E. Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking[J]. Journal of Biomechanics, 2001, 34(11): 1387-1398. doi:10.1016/S0021-9290(01)00105-1
[18] 徐中华, 方娟, 穆载乐, 等. 下肢康复机器人的运动控制设计[J]. 传感器与微系统,2019,38(9):81-83. doi: 10.13873/J.1000-9787(2019)09-0081-03 XU Zhong-hua, FANG Juan, MU Zai-le, et al. Design of motion control for lower limb rehabilitation robot [J]. Transducer and Microsystem Technologies, 2019, 38(9): 81-83.
[19] HUNT K J, FANKHAUSER S E. Heart rate control during treadmill exercise using input-sensitivity shaping for disturbance rejection of very-low-frequency heart rate variability [J]. Biomedical Signal Processing & Control, 2016, 30: 31-42. doi:10.1016/j.bspc.2016.06.005
[20] CHRIF F, NEF T, LUNGARELLA M, et al. Control design for a lower-limb paediatric therapy device using linear motor technology[J]. Biomedical Signal Processing & Control, 2017, 38: 119-127. doi:10.1016/j.bspc. 2017.05. 011
[1] Meng LI,Zong-jun YIN. Research on comprehensive quality assessment method for parts[J]. Chinese Journal of Engineering Design, 2022, 29(4): 410-418.
[2] YAN Ying, ZHANG Xiao-ping, JIANG Hai-peng, ZHANG Zhu, ZHAO Yan-ming, HUANG Liang-pei. Active heave compensation control method of marine winch driven by switched reluctance motor based on GSSEC[J]. Chinese Journal of Engineering Design, 2021, 28(2): 132-140.
[3] WANG Ben, ZHU Long-biao, SHEN Zu-jun, CHEN Xiao-lin. Design of control system of LYP1050 rotary offset press[J]. Chinese Journal of Engineering Design, 2021, 28(1): 112-120.
[4] CAO Peng-yong, WANG Jian-wen. Research on structure and control system of intelligent vehicle based on STM8S105[J]. Chinese Journal of Engineering Design, 2020, 27(4): 516-523.
[5] YANG Lei, REN Cheng-zu. Simulation and propulsion experimental analysis of electromagnetic propulsion device for cylindrical roller[J]. Chinese Journal of Engineering Design, 2019, 26(5): 611-618.