Please wait a minute...
Chinese Journal of Engineering Design  2018, Vol. 25 Issue (3): 330-337    DOI: 10.3785/j.issn.1006-754X.2018.03.012
    
Study on the effect of engine vibration on low cycle fatigue life of exhaust manifold
XU Yu-liang1,2, LIU Wei1,2, WANG Zhen1, ZU Bing-feng1,2, BAI Yang1, LIU Li-na1
1. Internal Combustion Engine Research Institute, Tianjin University, Tianjin 300072, China;
2. School of Mechanical Engineering, Tianjin University, Tianjin 300072, China
Download: HTML     PDF(4692KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Engine exhaust manifold works in the harsh environment with the coupling effect of dynamic thermal load and vibration load. It is found that plastic deformation has occurred in some areas with the thermal load alone, and the fatigue failure problem will be more serious coupling with the vibration load. A three-cylinder supercharged engine was taken as the research object to quantify the effect of vibration load on low-cycle fatigue damage of exhaust manifold. Firstly, the heat transfer boundary of the exhaust manifold internal and external flow fields under idle and rated conditions were calculated through the fluid-solid coupling method. The temperature field of the whole exhaust system under two conditions were respectively calculated by combining the temperature and the thermal exchange boundary of the turbocharger, catalyst and other components with that of the exhaust manifold above. Secondly, the elastic and elasto-plastic stress fields under the rated condition, and the elastic stress field under idle condition were calculated coupling with the temperature field and the bolt pretightening force. Based on the results of the elasto-plastic stress field under the rated condition, the dynamic stress field under the engine vibration load was calculated through the modal transient dynamics. Finally, according to the results of elastic stress field under rated and idle conditions as well as dynamic stress field under rated condition, the analysis models of the exhaust manifold about low-cycle thermal fatigue and vibration-thermal coupling fatigue were established with reference to the engine low cycle fatigue test standard and the load spectra from the two fatigue models corrected by the Neuber's rule was used to evaluate the fatigue life with the principal strain method. The result indicated that the risk region was mainly located in the high temperature and tensile stress regions. Compared with low-cycle thermal fatigue, the entire life with vibration load decreased by 25.2% and in some regions that came up to 57%. The study result provides theoretical basis and reference for the prediction of transient vibration-thermal coupling low-cycle fatigue life of exhaust manifold.



Key wordsfluid-solid coupling      Neuber's rule      low cycle fatigue      vibration load     
Received: 06 November 2017      Published: 28 June 2018
CLC:  TK412.4  
Cite this article:

XU Yu-liang, LIU Wei, WANG Zhen, ZU Bing-feng, BAI Yang, LIU Li-na. Study on the effect of engine vibration on low cycle fatigue life of exhaust manifold. Chinese Journal of Engineering Design, 2018, 25(3): 330-337.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2018.03.012     OR     https://www.zjujournals.com/gcsjxb/Y2018/V25/I3/330


发动机振动对排气歧管低周疲劳寿命影响研究

发动机排气歧管在动态热负荷与整机振动载荷耦合作用的恶劣环境中工作,在热负荷单独作用时其部分区域就已经发生塑性变形,而整机振动载荷的耦合作用将使其疲劳失效问题更为严峻。为量化整机振动载荷对排气歧管低周疲劳损伤的影响,以某三缸增压发动机为研究对象,首先,基于流固耦合方法获得了排气歧管在标定工况和怠速工况下内外流场的换热边界,并联合增压器、催化器等部件温度和换热边界对两工况下排气系统的温度场进行计算。然后,根据温度场计算结果,耦合螺栓预紧力的作用,对怠速工况下的弹性应力场以及标定工况下的弹性和弹塑性应力场进行了计算,并基于标定工况下的弹塑性应力场,应用模态瞬态动力学对标定工况下的整机振动载荷作用下的动应力进行分析。最后,依据标定和怠速工况下的弹性应力场、标定工况下的动应力场结果,参照发动机低周疲劳试验标准分别建立了排气歧管常规高温低周疲劳与整机振动-热耦合低周疲劳分析模型,引入Neuber准则对两者的载荷谱进行应力—应变修正后采用主应变法进行疲劳寿命评估。结果表明:排气歧管疲劳破坏风险点主要位于高温拉应力区域,叠加振动载荷会使整体疲劳寿命下降接近25.2%,部分区域下降幅度甚至高达57%。研究结果为排气歧管整机瞬态振动-热耦合低周疲劳寿命预测提供了一定的理论依据和参考。


关键词: 流固耦合,  Neuber准则,  低周疲劳,  振动载荷 

[1] 朱廉洁,刘晓伟,孙跃辉,等.三缸发动机整车怠速振动性能研究[J].噪声与振动控制,2015,35(6):119-122. ZHU Lian-jie, LIU Xiao-wei, SUN Yue-hui, et al. Study on idle vibration performance of an automobile with a three-cylinder engine[J]. Noise and Vibration Control, 2015, 35(6):119-122.
[2] DESAI D. Prediction of vibration and thermal behaviour of an automotive exhaust manifold:a comparative study[J]. WIT Transactions on Engineering Sciences:Materials Characterisation Ⅶ, 2015, 90:331-341.
[3] EROGLU S, DUMAN I, GUZEL A H, et al. Durability analysis of heavy duty engine exhaust manifold using CFD-FE coupling[C]//SAE 2016 World Congress and Exhibition, Detroit, Apr.12-14, 2016.
[4] 骆旭薇,石勇,李斌,等.应用FEA-CFD耦合方法对某增压柴油机排气歧管的开裂失效分析及设计改进[J].内燃机工程,2015,36(6):144-150. LUO Xu-wei, SHI Yong, LI Bin, et al. An FEA-CFD coupled analysis on the crack failure of the exhaust manifold of a turbo-charged diesel engine and design optimization[J]. Chinese Internal Combustion Engine Engineering, 2015, 36(6):144-150.
[5] LI Da-lei, YIN Yue-feng, CHEN Guang-fei, et al. Thermal fatigue analysis of the engine exhaust manifold[J]. Advanced Materials Research, 2012, 482/484:214-219.
[6] 曹元福,杨振宇,柯妍,等.排气歧管热负荷仿真与试验研究[J].汽车工程,2012,34(5):418-422. CAO Yuan-fu, YANG Zhen-yu, KE Yan, et al. Simulation and experimental study on the thermal loads of exhaust manifold[J]. Automotive Engineering, 2012, 34(5):418-422.
[7] SESANA R, DELPRETE C, VERCELLI A. Multiaxial damage assessment and life estimation:application to an automotive exhaust manifold[J]. Procedia Engineering, 2010, 2(1):725-734.
[8] MASHAYEKHI M, TAGHIPOUR A, ASKARI A, et al. Continuum damage mechanics application in low-cycle thermal fatigue[J]. International Journal of Damage Mechanics, 2013, 22(2):285-300.
[9] PARTOAA A A, ABDOLZADEH M, REZAEIZADEH M. Effect of fin attachment on thermal stress reduction of exhaust manifold of an off road diesel engine[J]. Journal of Central South University, 2017, 24(3):546-559.
[10] 李哲琨.排气歧管的热应力缓解技术研究[D].北京:北京理工大学机械与车辆学院,2015:41-67. LI Zhe-kun. Study on thermal stress alleviating technology of diesel exhaust manifold[D]. Beijing:Beijing Institute of Technology, School of Mechanical Engineering, 2015:41-67.
[11] CHOI B. A study on vibration fatigue of the engine exhaust manifold[J]. Journal of the Korean Society of Mechanical Technology, 2013, 15(5):661-666.
[12] 马学军.柴油机排气歧管的振动疲劳分析[D].太原:中北大学机械工程学院,2016:43-56. MA Xue-jun. Vibration fatigue analysis of diesel engine exhaust manifold[D]. Taiyuan:North University of China, School of Mechanical Engineering, 2016:43-56.
[13] SISSA S, GIACOPINI M, ROSI R. Low-cycle thermal fatigue and high-cycle vibration fatigue life estimation of a diesel engine exhaust manifold[J]. Procedia Engineering, 2014, 74:105-112.
[14] CONLE A, NOWACK H. Verification of a neuber-based notch analysis by the companion-specimen method[J]. Experimental Mechanics, 1977, 17(2):57-63.
[15] KILAMBI S, TIPTON S M. Numerical evaluation of the original "Neuber's rule" for pure out-of-plane shear loading[J]. Journal of Strain Analysis for Engineering Design, 2013, 48(8):522-535.
[16] RAJADURAI S, PRASAD M G, KAVIN R, et al. Modal analysis for exhaust manifold in hot condition, is there a need?[J]. SAE Technical Papers, 2014-28-0036.
[17] 史晓鸣,杨炳渊.瞬态加热环境下变厚度板温度场及热模态分析[J].计算机辅助工程,2006,15(S1):15-18. SHI Xiao-ming, YANG Bing-yuan. Temperature field and mode analysis of flat plate with thermal environment of transient heating[J]. Computer Aided Engineering, 2006, 15(S1):15-18.
[18] 吕红明.边界条件对短梁结构有限元分析影响的研究[J].工程设计学报,2013,20(4):321-325. LÜ Hong-ming. Study on the influence of boundary conditions on the finite element analysis of short beam[J]. Chinese Journal of Engineering Design, 2013, 20(4):321-325.
[19] 苏荣华,王碧珺,丁文文,等.旋转轮盘应力刚化效应对模态特性影响分析[J].工程设计学报,2009,16(4):292-296. SU Rong-hua, WANG Bi-jun, DING Wen-wen, et al.Influence analysis of stress stiffening effect of rotating wheel-disc on its modal characteristics[J]. Chinese Journal of Engineering Design, 2009, 16(4):292-296.
[20] Verein Deutscher Ingenieure. Systematic calculation of high duty bolted joints joints with one cylindrical bolt:VDI 2230-2003E[S]. Düsseldorf:Verein Deutscher Ingenieure, 2003:1-171.

[1] ZHANG Yun, ZHANG Rui-bin, MO De-yun, LIU Xiao-gang. Research on fluid-solid coupling heat transfer of water cooling system of electromagnetic engine[J]. Chinese Journal of Engineering Design, 2021, 28(3): 344-349.
[2] WANG Yu-pu, CHENG Wen-ming, DU Run, WANG Shu-biao, YANG Xing-zhou, ZHAI Shou-cai. Simulation analysis of wind load response for large gantry crane[J]. Chinese Journal of Engineering Design, 2020, 27(2): 239-246.
[3] ZHONG Qiang, LUO Zheng-shan. Coupled vibration response of marine riser caused by oil-gas-water three-phase slug flow[J]. Chinese Journal of Engineering Design, 2019, 26(1): 95-101.
[4] WANG Meng, XU Xiao-ting, LI Wen-qiang. Transient thermal simulation analysis method of missile-borne electronic equipment based on fluid-solid coupling[J]. Chinese Journal of Engineering Design, 2018, 25(2): 194-199,208.