Please wait a minute...
Chinese Journal of Engineering Design  2018, Vol. 25 Issue (2): 194-199,208    DOI: 10.3785/j.issn.1006-754X.2018.02.010
    
Transient thermal simulation analysis method of missile-borne electronic equipment based on fluid-solid coupling
WANG Meng1, XU Xiao-ting2, LI Wen-qiang3
1. The 29 th Institute, China Electronic Technology Group Corporation, Chengdu 610000, China;
2. Chengdu Aircraft Industrial(Group) Co., Ltd., Chengdu 610065, China;
3. School of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065, China
Download: HTML     PDF(5328KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Due to the dramatic changes during the course of missile fight, the temperature and thermal load of fairing skin have a rapid change, and that will bring a great influence on the operational performance of the missile. To ensure the design accuracy of the electronic device, a design calculation method based on the fluid-solid coupling nonstationary numerical simulation was proposed. Meanwhile, by solving the heat transfer equation of the fluid and the solid surface, the energy piecewise function of each point in the flow field was obtained. The piecewise function of transient power curve corresponding to each structure microelement of flow field was calculated by MATLAB software, and the Fluent thermal simulation analysis method was used to predict the transient variation of working temperature and ambient temperature of the whole missile-borne electronic equipment intuitively through the power curve piecewise function. By the study of aerodynamic heating problem of a type of anti-radiation seeker and its missile-borne electronic equipment, the space distribution of transient thermal every moment in the flow field of the seeker and its missile-borne electronic equipment was calculated, and the obtained results were in good agreement with the practice. The results show that the method has a certain reference for transient thermal analysis and corresponding heat dissipation design of similar electronic devices.



Key wordsfluid-solid coupling      aerodynamic heating      piecewise function     
Received: 05 July 2017      Published: 28 April 2018
CLC:  TG244  
  TP39  
Cite this article:

WANG Meng, XU Xiao-ting, LI Wen-qiang. Transient thermal simulation analysis method of missile-borne electronic equipment based on fluid-solid coupling. Chinese Journal of Engineering Design, 2018, 25(2): 194-199,208.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2018.02.010     OR     https://www.zjujournals.com/gcsjxb/Y2018/V25/I2/194


基于流固耦合的弹载电子设备瞬态热仿真分析方法

在导弹飞行过程中由于工况环境剧烈变化,其整流罩蒙皮温度和热载荷急剧变化,这将对导弹的作战性能产生重大影响。为保证弹载电子设备的设计满足精度要求,提出了一种基于流固耦合非定常数值模拟的设计计算方法。针对弹载电子设备在高速运行过程中的瞬态热载荷是一个典型流固耦合问题,通过求解流体与固体表面的热传递方程,计算获得流场内各点的能量分段函数。运用MATLAB软件计算拟合出流场每块结构微元对应的瞬态功率曲线分段函数,采用将功率曲线分段函数加载至Fluent的热仿真分析方法,直观预测整个弹载电子设备的工作温度及其环境温度的瞬态变化。通过对某型号反辐射导引头及其弹载电子设备气动加热问题进行具体计算分析,获得了该型号装备在各个时刻流场内导引头及其弹载电子设备的瞬态温度空间分布,所得结果与实际有较好的吻合度。结果表明该方法对同类电子设备的瞬态热分析和相应散热设计具有一定参考作用。


关键词: 流固耦合,  气动加热,  分段函数 

[1] 王真,高凤岐,高敏,等.导引头稳定平台的新型自抗扰控制器设计研究[J].电光与控制,2016,23(9):84-89. WANG Zhen, GAO Feng-qi, GAO Min, et al. On design of auto-disturbance rejection controller for seeker stabilized platform[J]. Electronics Optics & Control, 2016, 23(9):84-89.
[2] 余建祖.电子设备热设计及分析技术[M].北京:北京航空航天大学出版社,2000:25-26. YU Jian-zu, Thermal design and analysis techniques of electronic equipment[M]. Beijing:Beihang University Press, 2000:25-26.
[3] 张志英,陈雨琪,张宏军,等.基于动态故障树的导弹驾驶仪系统可靠性分析[J].南京理工大学学报,2013,37(4):543-550. ZHANG Zhi-ying, CHEN Yu-qi, ZHANG Hong-jun, et al. Reliability analysis of missile autopilot system based on dynamic fault tree[J]. Journal of Nanjing University of Science and Technology, 2013, 37(4):543-550.
[4] 陈鑫,王浩丞,唐勇,等.多径环境中被动雷达导引头测向性能分析[J].电子信息对抗技术,2011,26(4):1-4. CHEN Xin, WANG Hao-cheng, TANG Yong, et al. Angle characteristic analysis of PRS in multipath environment[J]. Electronic Information Warfare Technology, 2011, 26(4):1-4.
[5] 钱若军,董石麟,袁行飞,等.流固耦合理论研究进展[J].空间结构,2008,14(1):3-15. QIAN Ruo-jun, DONG Shi-lin, YUAN Xing-fei, et al. Advances in research on fluid-structure interaction theory[J]. Spatial Structures, 2008, 14(1):3-15.
[6] XING J T, PRICE W G, CHEN Y G. A numerical method to simulate nonlinear fluid-rigid structure interaction problems[J]. Acta Mechanica Solida Sinica, 2005, 26(4):373-383.
[7] 杨林.非线性流固耦合问题的数值仿真方法研究[D].青岛:中国海洋大学工程学院,2011:3-5. YANG Lin. Numerical simulation method research of the nonlinear fluid-solid interaction problems[D]. Qingdao:Ocean University of China, College of Engineering, 2011:3-5.
[8] 陈锋,王春江,周岱,等.流固耦合理论与算法评述[J].空间结构,2012,18(4):55-63. CHEN Feng, WANG Chun-jiang, ZHOU Dai, et al. Review of theory and numerical methods of fluid-structure interaction[J]. Spatial Structures, 2012, 18(4):55-63.
[9] 朱洪来,白象忠.流固耦合问题的描述方法及分类简化准则[J].工程力学,2007,24(10):92-99. ZHU Hong-lai, BAI Xiang-zhong. Description method and simplified classification rule for fluid-solid interaction problems[J]. Engineering Mechanics, 2007, 24(10):92-99.
[10] 高双武,强洪夫,周伟,等.流固耦合数值模拟方法及其在分段式SRM的应用[J].弹箭与制导学报,2012,32(1):111-113. GAO Shuang-wu, QIANG Hong-fu, ZHOU Wei, et al. Fluid structure interaction method and its application in SRM with segments[J]. Journal of Projectiles Rockets Missiles and Guidance, 2012, 32(1):111-113.
[11] 高展,徐小宇,闫帅,等.基于离散几何法的多物理场耦合问题研究[J].电子设计工程,2017,25(1):166-170. GAO Zhan, XU Xiao-yu, YAN Shuai, et al. Study of multiphysics problem based on discrete geometric method[J]. Electronic Design Engineering, 2017, 25(1):166-170.
[12] 吴泽玉,王东炜,汪志昊,等.流-固耦合问题的精细积分求解法[J].上海交通大学学报,2017,51(6):756-760. WU Ze-yu, WANG Dong-wei, WANG Zhi-hao, et al. Precise integration method for solving fluid-soild coupling problems[J]. Journal of Shanghai Jiaotong University, 2017, 51(6):756-760.
[13] 张健,黄晨光.三维瞬态方形管流的热流固耦合数值模拟[J].工程力学,2010,27(6):232-239. ZHANG Jian, HUANG Chen-guang. Numerical simulation of 3-D transient thermo-fluid-solid coupled flow in a rectangular channel[J]. Engineering Mechanics, 2010, 27(6):232-239.
[14] 郭崇志,肖乐.换热器流固传热边界数值模拟温度场的顺序耦合方法[J].化工进展,2010,29(9):1615-1619. GUO Chong-zhi, XIAO Le. A sequence coupling method for numerical simulation of temperature field in liquid-solid heat transfer boundary of a heat exchanger[J]. Chemical Industry and Engineering Progress, 2010, 29(9):1615-1619.
[15] 卢燕,王珏,凌明祥,等.精密离心机热变形多物理场耦合数值计算[J].工程设计学报,2016,23(1):49-53. LU Yan, WANG Yu, LING Ming-xiang, et al. Numerical simulation of multi-physics coupling for the thermal deformation of precision centrifuge[J]. Chinese Journal of Engineering Design, 2016, 23(1):49-53.
[16] 王正裕,李孝伟.基于动态嵌套网格技术的飞行器导弹发射的数值模拟[J].上海大学学报(自然科学版),2008,14(2):173-176. WANG Zheng-yu, LI Xiao-wei. Simulation of air launched missile based on moving chimera grid[J]. Journal of Shanghai University (Natural Science), 2008, 14(2):173-176.
[17] 王静,高效伟.热辐射问题的边界元算法[J].导弹与航天运载技术,2011(1):46-53. WANG Jing, GAO Xiao-wei. A boundary element method for solving heat radiation problems[J]. Missiles and Space Vehicles, 2011(1):46-53.
[18] 白洁,陈皓,廖选平,等.导弹末制导状态亚声速流场数值模拟[J].导弹与航天运载技术,2014(4):23-27. BAI Jie, CHEN Hao, LIAO Xuan-ping, et al. Numerical simulation on the subsonic flow of terminal guiding missile[J]. Missiles and Space Vehicles, 2014(4):23-27.

[1] ZHANG Yun, ZHANG Rui-bin, MO De-yun, LIU Xiao-gang. Research on fluid-solid coupling heat transfer of water cooling system of electromagnetic engine[J]. Chinese Journal of Engineering Design, 2021, 28(3): 344-349.
[2] WANG Yu-pu, CHENG Wen-ming, DU Run, WANG Shu-biao, YANG Xing-zhou, ZHAI Shou-cai. Simulation analysis of wind load response for large gantry crane[J]. Chinese Journal of Engineering Design, 2020, 27(2): 239-246.
[3] ZHONG Qiang, LUO Zheng-shan. Coupled vibration response of marine riser caused by oil-gas-water three-phase slug flow[J]. Chinese Journal of Engineering Design, 2019, 26(1): 95-101.
[4] XU Yu-liang, LIU Wei, WANG Zhen, ZU Bing-feng, BAI Yang, LIU Li-na. Study on the effect of engine vibration on low cycle fatigue life of exhaust manifold[J]. Chinese Journal of Engineering Design, 2018, 25(3): 330-337.