Please wait a minute...
Chinese Journal of Engineering Design  2018, Vol. 25 Issue (3): 338-345,359    DOI: 10.3785/j.issn.1006-754X.2018.03.013
    
Evaluation of human upper limb motion comfort based on motion capture technique
LI Zhao-bo1, TAO Qing1,2, KANG Jin-sheng3, SUN Wen-lei1, ZHANG Kai-tuo1, WANG Shou-dong1
1. School of Mechanic Engineering, Xinjiang University, Urumqi 830047, China;
2. Center for Post-doctoral Studies of Mechanic Engineering, Xinjiang University, Urumqi 830047, China;
3. College of Engineering, Design and Physical Sciences, Brunel University, London UB8 3PH, United Kingdom
Download: HTML     PDF(4507KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Biomechanical study of human upper limb is one of the most referenced aspects for the optimization of upper limb posture and the design of related products. Firstly, a real-time optical motion capture system was used to capture the real-time position of key points of the human body in the course of executing the specified action. The focus of the work was to calculate and deeply analyze the experimental data of the human upper limb by MATLAB software. Then, the human upper limb was simplified as a club model, and the variation value of each joint angle of the human upper limb during the motion process was calculated by the cosine theorem. The dynamic joint torque was computed by the inverse dynamics and the change of main muscle force was calculated by the optimization analysis. Lastly, the human upper limb motion comfort was evaluated by calculating the real-time load rate of human upper limb muscles, and the motion comfort index evaluation model of human upper limb was established. The experiment result proved that the human upper limb muscles were in the comfort state when the body executed the specified action at a sitting posture. The results provide a theoretical basis for the depth analysis of human upper limb motion.



Key wordsmotion capture      inverse dynamics      muscle force      comfort index     
Received: 07 December 2017      Published: 28 June 2018
CLC:  TH122  
  TB472  
Cite this article:

LI Zhao-bo, TAO Qing, KANG Jin-sheng, SUN Wen-lei, ZHANG Kai-tuo, WANG Shou-dong. Evaluation of human upper limb motion comfort based on motion capture technique. Chinese Journal of Engineering Design, 2018, 25(3): 338-345,359.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2018.03.013     OR     https://www.zjujournals.com/gcsjxb/Y2018/V25/I3/338


基于动作捕捉技术的人体上肢运动舒适性评价

人体上肢生物力学分析对上肢动作优化和相关产品的设计具有重要意义。首先,采用实时光学动作捕捉系统采集人体在执行指定动作过程中关键点的实时位置,并使用MATLAB软件设计编写了计算方程,重点对人体上肢的实验数据进行深入分析。然后,将人体肢体简化为球棍模型,运用余弦定理反求人体上肢运动过程中各关节角度的变化值,使用逆向动力学方法求解出人体上肢关节力矩的动态变化值以及通过优化计算得到人体上肢主要肌力的变化量。最后,通过计算人体上肢肌肉的实时负荷率来评价人体上肢运动舒适性,并建立了人体上肢运动舒适指数评价模型。结果表明人体在坐姿下执行指定动作时上肢肌肉处于舒适状态。研究结果为人体上肢动作的深度分析提供了理论基础。


关键词: 动作捕捉,  逆向动力学,  肌力,  舒适指数 

[1] GEFFEN P V, REENALDA J, VELTINK P H,et al. Decoupled pelvis adjustment to induce lumbar motion:a technique that controls low back load in sitting[J]. International Journal of Industrial Ergonomics, 2010, 40(1):47-54.
[2] O'SULLIVAN P B, DANKAERTS W, BURNETT A F, et al. Effect of different upright sitting postures on spinal pelvic curvature and trunk muscle activation in a pain-free population[J]. Spine, 2006, 31(19):707-712.
[3] YANG Zhong-liang, SUN Shou-qian, CHEN Guo-dong. Evaluating sitting comfort with questionnaire and body pressure distribution:overview and design[C]//Proceedings of 2009 IEEE 10th International Conference on Computer-Aided Industrial Design & Conceptual Design, Hangzhou, Nov.26-29, 2009.
[4] 陈文斌.人体上肢运动学分析及类人肢体设计及运动规划[D].武汉:华中科技大学机械科学与工程学院, 2012:14-29. CHEN Wen-bin. Human upper limb kinematics and anthropomorphic robot kinematic design and motion planning[D]. Wuhan:Huazhong University of Science and Technology, College of Mechanical Science and Engineering, 2012:14-29.
[5] 王晓东,王春慧,王政,等.人服系统上肢交互生物力学仿真模型[J].医用生物力学,2015,30(6):540-546. WANG Xiao-dong, WANG Chun-hui, WANG Zheng, et al. Biomechanical simulation model of upper limb interaction for human-spacesuit system[J]. Journal of Medical Biomechanics, 2015, 30(6):540-546.
[6] 梁培栋.基于表面肌电信号的人机动作信息传递研究[D].哈尔滨:哈尔滨工业大学机电工程学院,2017:81-89. LIANG Pei-dong. Research on human robot motion transfer based on sEMG signals[D]. Harbin:Harbin Institute of Technology, School of Mechatronics Engineering, 2017:81-89.
[7] 张鄂,毕朝瑞,王冠华,等.动态驾驶环境所致人体肌肉疲劳的生物信号实验研究[J].工程设计学报,2010,17(4):246-251. ZHANG E, BI Chao-rui, WANG Guan-hua, et al. Experimental research on biological signal of muscle fatigue under dynamic driving environment[J]. Chinese Journal of Engineering Design, 2010, 17(4):246-251.
[8] 王成焘,王冬梅,白雪岭,等.人体骨肌系统生物力学[M].北京:科学出版社,2015:50-98. WANG Cheng-tao, WANG Dong-mei, BAI Xue-ling, et al. Human musculoskeletal system biomechanics[M]. Beijing:Science Press, 2015:50-98.
[9] 韩树洋.人体关节生物力学实验及仿真研究[D].徐州:中国矿业大学机电工程学院,2014:17-32. HAN Shu-yang. Experiment and simulation study on biomechanics of human joints[D]. Xuzhou:China University of Mining and Technology, School of Mechatronic Engineering, 2014:17-32.
[10] 韩英,洪军,王崴,等.用于设备操控件布局设计的人体静态姿势评价准则[J].机械工程学报,2010,46(2):192-198. HAN Ying, HONG Jun, WANG Wei, et al. Static postures assessment rule of the steering layout design[J]. Journal of Mechanical Engineering, 2010, 46(2):192-198.
[11] LIESBETH Groenesteijn, ROLF P Ellegast, KATHRIN Keller, et al. Office task effects on comfort and body dynamics in five dynamic office chairs[J]. Applied Ergonomics, 2012, 43(2):320-328.
[12] ROLF Ellegast, KATHRIN Kraft, LIESBETH Groenesteijn, et al. Comparison of four specific dynamic office chairs with a conventional office chair:impact upon muscle activation, physical activity and posture[J]. Applied Ergonomics, 2012, 43(2):296-307.
[13] MARIA B Sancheza, IAN Lorama, JOHN Darby, et al. A video based method to quantify posture of the head and trunk in sitting[J]. Gait & Posture, 2017, 51:181-187.
[14] FRANCESCO Caputo, EGIDIO Amato, STEFANIA Spada, et al. Upper body motion tracking system with inertial sensors for ergonomic issues in industrial environments[C]//International Conference on Physical Ergonomics and Human Factors, Florida, Jul.27-31, 2016.
[15] DON B Chaffin, GUNNAR B J Andersson, BERNARD J Martin. Occupational biomechanics[M]. 4th ed. Hoboken:John Wiley & Sons, Inc., 2006:56.
[16] DAVID A Winter.Biomechanics and motor control of human movement[M]. 4th ed. Hoboken:John Wiley & Sons,Inc., 2009:100.
[17] WENDY M Murray, THOMAS S Buchanan, SCOTT L Delp. The isometric functional capacity of muscles that cross the elbow[J]. Journal of Biomechanics, 2000, 33(8):943-952.
[18] SAMUEL Ward, CAROLYN Eng, LAURA Smallwood, et al. Are current measurements of lower extremity muscle architecture accurate?[J]. Clinical Orthopaedics and Related Research, 2009, 467(4):1074-1082.

[1] HUO Xiao, SUN Wen-lei, TAO Qing, KANG Jin-sheng, LI Zhao-bo, WANG Shou-dong. Seat comfort test and evaluation based on sitting posture analyses[J]. Chinese Journal of Engineering Design, 2017, 24(3): 286-294.
[2] ZHOU Jie-hua. New optimization algorithm of driving force for parallel manipulator with redundant actuation[J]. Chinese Journal of Engineering Design, 2015, 22(6): 534-539.