Please wait a minute...
工程设计学报  2017, Vol. 24 Issue (3): 330-336    DOI: 10.3785/j.issn.1006-754X.2017.03.013
建模、分析、优化和决策     
基于单神经元PID的盾构推进系统同步控制研究
陈馈1,3, 牛彦杰2,3, 李阁强2,3, 徐莉萍2,3, 郭冰菁2,3
1. 盾构及掘进技术国家重点实验室, 河南 郑州 450001;
2. 河南科技大学 机电工程学院, 河南 洛阳 471000;
3. 机械装备先进制造河南省协同创新中心, 河南 洛阳 471000
Research on synchronous control of shield propulsion system based on single neuron PID
CHEN Kui1,3, NIU Yan-jie2,3, LI Ge-qiang2,3, XU Li-ping2,3, GUO Bing-jing2,3
1. State Key Laboratory of Shield Machine and Boring Technology, Zhengzhou 450001, China;
2. School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang 471000, China;
3. Collaborative Innovation Center of Machinery Equipment Advanced Manufacturing of Henan Province, Luoyang 471000, China
 全文: PDF(7039 KB)   HTML
摘要:

以在南昌地铁1号线艾溪湖东站至艾溪湖西站区间施工的 “英雄号”盾构机为研究对象,针对盾构在复杂地层施工时,常规PID算法无法满足推进油缸速度同步控制的问题,提出单神经元PID控制策略。通过AMESim建立液压推进系统的物理模型,并利用Simulink设计出单神经元控制器,最后进行联合仿真,分析在不均突变载荷下各区间推进油缸的速度响应特性。仿真结果表明,该控制策略与常规PID相比,调节时间缩短0.1 s左右,振荡幅值减小至原来的1/2内。由此可得,采用单神经元PID控制能够有效地解决推进油缸速度同步性差的问题,为不良地质环境下盾构推进系统的同步控制提供了理论支撑。

关键词: 推进系统单神经元PID同步控制    
Abstract:

Taking the “Hero” shield machine working in a certain section of Nanchang Metro Line 1 station as the research object, aiming at the problem that conventional PID cannot guarantee the precision of propulsion cylinder synchronous control, the strategy of single neuron PID control was put forward. The physical model of hydraulic propulsion system was established by AMESim, and the single neuron controller was designed by Simulink. Finally, the synchronous control performance of the propulsion cylinder under the condition of different sudden change loads was analyzed by joint simulation. The simulation results showed that compared with conventional PID, the regulating time of the proposed control strategy was shortened about 0.1 s, and the oscillation amplitude was reduced to the original 1/2. From the analysis of results, single neuron PID control can effectively solve the problem of propulsion cylinder synchronous control, which provides an effective theoretical support for the synchronous control of shield propulsion system under adverse geological environment.

Key words: propulsion system    single neuron    PID    synchronous control
收稿日期: 2016-09-30 出版日期: 2017-06-28
CLC:  TH137  
基金资助:

国家重点基础研究发展计划(973计划)资助项目(2014CB046906);国家高技术研究发展计划(863计划)资助项目(2012AA0418002);盾构及掘进技术国家重点实验室开放课题(2014-03)

作者简介: 陈馈(1963-),男,湖南新化人,教授级高级工程师,博士,从事盾构技术研究,E-mail: chenk-center@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈馈
牛彦杰
李阁强
徐莉萍
郭冰菁

引用本文:

陈馈, 牛彦杰, 李阁强, 徐莉萍, 郭冰菁. 基于单神经元PID的盾构推进系统同步控制研究[J]. 工程设计学报, 2017, 24(3): 330-336.

CHEN Kui, NIU Yan-jie, LI Ge-qiang, XU Li-ping, GUO Bing-jing. Research on synchronous control of shield propulsion system based on single neuron PID[J]. Chinese Journal of Engineering Design, 2017, 24(3): 330-336.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2017.03.013        https://www.zjujournals.com/gcsjxb/CN/Y2017/V24/I3/330

[1] 陈馈, 洪开荣, 吴学松, 等. 盾构施工技术[M].北京: 人民交通出版社, 2008: 91-93. CHEN Kui, HONG Kai-rong, WU Xue-song. Shield construction technology[M]. Beijing: China Communication Press, 2008: 91-93.
[2] 候典清. 盾构推进系统顺应特性及掘进姿态控制研究[D]. 杭州: 浙江大学机械工程学院, 2013: 81-97. HOU Dian-qing. Research on compliance characteristics and attitude control of shield propulsion system[D]. Hangzhou: Zhejiang University, College of Mechanical Engineering, 2013: 81-97.
[3] 周如林, 龚国芳, 汪慧, 等. 盾构推进系统专家PID同步控制分析[J]. 中国机械工程, 2010, 21(18): 2202-2206. ZHOU Ru-lin, GONG Guo-fang, WANG Hui, et al. Expert-PID synchronization control of thrust hydraulic system[J]. China Mechanical Engineering, 2010, 21 (18): 2202-2206.
[4] 周如林, 龚国芳, 施虎, 等. 盾构推进系统液压缸的同步协调控制[J]. 工程设计学报, 2009, 16(6): 457-461. ZHOU Ru-lin, GONG Guo-fang, SHI Hu, et al. Synchronization coordinated control of the hydraulic cylinder of the thrust system on shield machines[J].Chinese Journal of Engineering Design, 2009, 16(6): 457-461.
[5] 胡国良, 刘乐平, 龚国芳, 等. 盾构推进系统同步控制仿真与试验研究[J]. 中国机械工程, 2008, 19(10): 1197-1201. HU Guo-liang, LIU Le-ping, GONG Guo-fang, et al. Simulation and experimental analyses of synchronization control for shield thrust system[J]. China Mechanical Engineering, 2008, 19(10): 1197-1201.
[6] 王欣一. 南昌地铁一号线的地下空间形态研究[D]. 南昌: 南昌大学经济管理学院, 2013: 32-35. WANG Xin-yi. Underground space's exploitation and research[D]. Nanchang: Nanchang University, School of Economics Management, 2013: 32-35.
[7] 李小明. 土压平衡盾构掘进引起地面沉降研究: 以南昌地铁为例[D]. 南京: 南京大学地球科学与工程学院, 2014: 13-16. LI Xiao-ming. Study on ground subsidence induced by earth pressure balanced shield tunneling: a Nanchang subway respective[D]. Nanjing: Nanjing University, School of Earth Sciences and Engineering, 2014: 13-16.
[8] 白廷辉, 刘树佳, 廖少明, 等. 软土地区盾构掘进速度对地层扰动现场试验研究[J]. 岩土力学, 2016, 37(7): 2040-2045. BAI Ting-hui, LIU Shu-jia, LIAO Shao-ming, et al. Experimental study of disturbance caused by the advancing speed of shield tunneling in soft soil[J]. Rock and Soil Mechanics, 2016, 37(7): 2040-2045.
[9] 刘峰, 龚国芳, 石元奇, 等. 基于自适应控制技术的盾构掘进监控系统[J].工程设计学报, 2010, 17(4): 302-306. LIU Feng, GONG Guo-fang, SHI Yuan-qi, et al. Monitoring system of shield tunneling machine based on adaptive control technology[J].Chinese Journal of Engineering Design, 2010, 17(4): 302-306.
[10] YANG Hua-yong, SHI Hu, GONG Guo-fang, et al. Electro-hydraulic proportional control of thrust system for shield tunneling machine[J]. Automation in Construction, 2009, 18(7): 950-956.
[11] 刘国斌, 龚国芳, 朱北斗, 等. 基于BP神经网络的盾构推进速度自适应PID控制[J]. 工程设计学报, 2010, 17(6): 454-458. LIU Guo-bin, GONG Guo-fang, ZHU Bei-dou, et al. Adaptive PID control of thrust speed of the shield based on BP networks[J]. Chinese Journal of Engineering Design, 2010, 17(6): 454-458.
[12] DUAN X M, XIE H B, LIU Z B, et al. Precise control of thrust force on the shield tunneling machine[J]. Applied Mechanics & Materials, 2011(48/49): 834-839.
[13] 王昕, 赵丁选, 尚涛, 等. 基于单神经元的液压挖机自适应PID节能控制[J]. 吉林大学学报(工学版), 2005, 35(4): 377-380. WANG Xin, ZHAO Ding-xuan, SHANG Tao, et al. Adaptive PID control for energy-saving of hydraulic excavator based on single neuron[J].Journal of Jilin University (Engineering and Technology Edition), 2005, 35(4): 377-380.
[14] 严骏, 黎波, 郭刚, 等. 基于单神经元PID的挖掘机铲斗位姿自适应控制[J]. 解放军理工大学学报(自然科版), 2012, 13(3): 316-319. YAN Jun, LI Bo, GUO Gang, et al. Adaptive control for bucket position of excavator based on single neuron PID[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2012, 13(3): 316- 319.
[15] 王秀君, 胡协和. 一种改进的单神经元PID控制策略[J]. 浙江大学学报(工学版), 2011, 45(8): 1498-1501. WANG Xiu-jun, HU Xie-he. An improved control strategy of single neuron PID[J]. Journal of Zhejiang University (Engineering Science), 2011, 45(8): 1499-1501.
[16] LYNN A, SMID E. Modeling hydraulic regenerative hybrid vehicles using AMESim and MATLAB Simulink[J]. Proceedings of Spie the International Society for Optical Engineering, 2005(5805): 24-40.
[1] 陈翼楠,蒲志新,郑珍妮. 一种具有力检测机制的新型血管介入手术机器人[J]. 工程设计学报, 2023, 30(1): 20-31.
[2] 任明妍,谭旭,曾婷,王荣,李海月. 空间站舱体水平旋转装备六点调平算法及同步控制方法[J]. 工程设计学报, 2022, 29(6): 676-683.
[3] 周婧,高红飞,卢林,段国林. 变论域模糊PID控制微流挤出型3D打印机的挤压力研究[J]. 工程设计学报, 2022, 29(5): 572-578.
[4] 王超, 孙文旭, 马晓静, 陈纪旸, 栾义忠, 马思乐. 基于模糊控制的HVPE生长设备温度控制系统[J]. 工程设计学报, 2020, 27(6): 765-770.
[5] 郑华林, 杨舜波, 潘盛湖, 王超. 百叶片定长切料-自动排片控制系统研究[J]. 工程设计学报, 2019, 26(4): 461-468.
[6] 王莉, 张士兵. 基于CPSO-BP神经网络-PID的热熔胶机温控系统研究[J]. 工程设计学报, 2017, 24(5): 588-594.
[7] 石卓, 龚国芳, 刘统, 吴伟强, 彭左. TBM试验台支撑推进节能系统设计与仿真分析[J]. 工程设计学报, 2017, 24(3): 323-329.
[8] 潘春荣, 许化. 基于STM32的X型四旋翼无人机设计[J]. 工程设计学报, 2017, 24(2): 196-202,210.
[9] 司国斌, 王春霞, 靳孝峰. FDM型3D打印机的高精度进料系统研究[J]. 工程设计学报, 2016, 23(5): 497-500,512.
[10] 王爱国, 陈健伟. 基于MATLAB的3-RPS并联机构控制系统仿真[J]. 工程设计学报, 2016, 23(2): 172-180.
[11] 杨前明,孔令奇,李 健,王世刚,郭建伟. 电液比例马达速度同步控制系统建模与仿真[J]. 工程设计学报, 2015, 22(5): 330-336.
[12] 杨前明,孔令奇,李 健,王世刚,郭建伟. 电液比例马达速度同步控制系统建模与仿真[J]. 工程设计学报, 2015, 22(4): 330-336.
[13] 谢 苗,刘治翔,毛 君. 综掘巷道超前支护装备多缸同步控制方法研究[J]. 工程设计学报, 2015, 22(2): 193-200.
[14] 董胜, 袁朝辉. 舵机电液伺服加载复合控制方法研究[J]. 工程设计学报, 2013, 20(6): 539-544.
[15] 刘杰, 卿启湘, 文桂林. EPB盾构机推进系统振动响应分析[J]. 工程设计学报, 2013, 20(6): 489-494.