Please wait a minute...
工程设计学报  2017, Vol. 24 Issue (3): 323-329    DOI: 10.3785/j.issn.1006-754X.2017.03.012
建模、分析、优化和决策     
TBM试验台支撑推进节能系统设计与仿真分析
石卓, 龚国芳, 刘统, 吴伟强, 彭左
浙江大学 流体动力与机电系统国家重点实验室, 浙江 杭州 310027
Design and simulation analysis of gripper and thrust energy-saving system for TBM test rig
SHI Zhuo, GONG Guo-fang, LIU Tong, WU Wei-qiang, PENG Zuo
State Key Lab of Fliud Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1867 KB)   HTML
摘要:

针对全断面硬岩隧道掘进机(hard rock tunnel boring machine,简称TBM)在撑靴以设定压力撑紧围岩后支撑推进系统存在较大流量损失的问题,设计出一种具有负载敏感、恒压控制和蓄能器辅助支撑功能的支撑推进(简称LSCPGT)系统。利用AMESim软件搭建了LSCPGT系统模型,仿真分析了LSDRGT系统在变推进负载下的压力流量响应,并对比分析了在支撑工况下LSCPGT系统和恒压控制泵型支撑(constant pressure gripper,CPG)系统,以及在推进工况下LSCPGT系统与负载敏感泵型推进(load-sensing thrust,LST)系统和定量泵型推进(ration thrust,RT)系统的压力流量响应.结果表明:LST系统和LSCPGT系统在推进过程中都没有流量损失;CPG系统在支撑工况下存在流量损失,而LSCPGT系统由于蓄能器的保压作用没有流量损失;相对于LST系统+CPG系统的支撑推进系统,LSCPGT系统在撑靴达到设定压力后效率至少可提高43.5%。所设计的LSCPGT系统在满足支撑推进要求的同时,避免了流量损失,具有较好的节能效果。

关键词: TBM支撑推进系统负载敏感恒压控制蓄能器节能AMESim仿真    
Abstract:

A Gripper and Thrust hydraulic system with the function of Load-Sensing, Constant Pressure control and auxiliary support of accumulator (LSCPGT) was proposed to overcome the problem of high relief loss in the hard rock Tunnel Boring Machine (TBM) gripper and thrust system after gripper reached a preset pressure. Model of LSCPGT system was established by AMESim. The pressure and flow responses of LSCPGT system were analyzed, and the pressure and flow responses of Constant Pressure Gripper (CPG) system were compared with that in gripper system, and the pressure and flow responses of Load-Sensing Thrust (LST) system and Ration Thrust (RT) system were compared with that in thrust system. The results indicated that LST system and LSCPGT system had no flow loss during the thrust process. In gripper system, the CPG system had certain flow loss under the support condition, but the LSCPGT system had no flow loss with the help of accumulator. Moreover, compared with the gripper and thrust system composed of LST system and CPG system, LSCPGT system improved at least 43.5% in efficiency after gripper reached preset pressure. The designed LSCPGT system which meets the demand of gripper and thrust can save energy through avoiding flow loss.

Key words: TBM    gripper and thrust system    load-sensing    constant pressure control    accumulator    energy-saving    AMESim simulation
收稿日期: 2016-12-09 出版日期: 2017-06-28
CLC:  TH137  
基金资助:

国家高技术研究发展计划(863计划)资助项目(2012AA041803);国家重点基础研究发展计划(973计划)资助项目(2013CB035400)

通讯作者: 龚国芳(1963-),男,浙江宁波人,教授,博士生导师,从事电液控制系统集成、系统性能分析、液压和液力传动等研究,E-mail:gfgong@zju.edu.cn     E-mail: gfgong@zju.edu.cn
作者简介: 石卓(1992-),男,河南南阳人,硕士生,从事隧道掘进装备电液控制技术研究,E-mail:shizhuo19921029@163.com,http://orcid.org//0000-0002-3970-1993
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
石卓
龚国芳
刘统
吴伟强
彭左

引用本文:

石卓, 龚国芳, 刘统, 吴伟强, 彭左. TBM试验台支撑推进节能系统设计与仿真分析[J]. 工程设计学报, 2017, 24(3): 323-329.

SHI Zhuo, GONG Guo-fang, LIU Tong, WU Wei-qiang, PENG Zuo. Design and simulation analysis of gripper and thrust energy-saving system for TBM test rig[J]. Chinese Journal of Engineering Design, 2017, 24(3): 323-329.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2017.03.012        https://www.zjujournals.com/gcsjxb/CN/Y2017/V24/I3/323

[1] 杜彦良, 杜世杰.全断面岩石隧道掘进机: 系统原理与集成设计[M].武汉: 华中科技大学出版社, 2011: 1-16. DU Yan-liang, DU Shi-jie. Full face hard rock tunnel boring machine: system principles and integrated design[M]. Wuhan: Huazhong University of Science and Technology Press, 2011: 1-16.
[2] 杜士斌, 揣连成.开敞式TBM的应用[M].北京: 中国水利水电出版社, 2011: 1-26. DU Shi-bin, CHUAI Lian-cheng. The application of open-type TBM[M]. Beijing: China Water & Power Press, 2011: 1-26.
[3] 施虎, 杨华勇, 龚国芳, 等.盾构掘进机关键技术及模拟试验台现状与展望[J].浙江大学学报(工学版), 2013, 47(5): 741-749. SHI Hu, YANG Hua-yong, GONG Guo-fang, et al. Key technologies of shield tunnel machine and present status and prospect of test rigs for tunneling simulation[J]. Journal of Zhejiang University (Engineering Science), 2013, 47(5): 741-749.
[4] 周鸿彬, 龚国芳, 王林涛, 等.Ø1.2 m缩尺实验盾构机械结构与液压系统设计[J].工程设计学报, 2014, 21(2): 185-190. ZHOU Hong-bin, GONG Guo-fang, WANG Lin-tao, et al. Mechanical structure and hydraulic system design of Ø1.2 m simulated shield machine[J]. Chinese Journal of Engineering Design, 2014, 21(2): 185-190.
[5] 张振, 龚国芳, 饶云意, 等. TBM试验台支撑推进液压系统设计与仿真分析[J]. 工程设计学报, 2015, 22(4): 324-329. ZHANG Zhen, GONG Guo-fang, RAO Yun-yi, et al. Design and simulation analysis of gripper and thrust hydraulic system for TBM test rig[J]. Chinese Journal of Engineering Design, 2015, 22(4): 324-329.
[6] 吴根茂, 邱敏秀, 王庆丰, 等.实用电液比例技术[M].杭州: 浙江大学出版社, 2010: 266-282. WU Gen-mao, QIU Min-xiu, WANG Qing-feng, et al. Electrohydraulic proportional technique in theory and application[M]. Hangzhou: Zhejiang University Press, 2010: 266-282.
[7] 施虎, 龚国芳, 杨华勇, 等.盾构掘进机推进力计算模型[J].浙江大学学报(工学版), 2011, 45(1): 126-131. SHI Hu, GONG Guo-fang, YANG Hua-yong, et al. Determination of thrust force for shield tunneling machine[J]. Journal of Zhejiang University (Engineering Science), 2011, 45(1): 126-131.
[8] YANG X, GONG G F, YANG H Y, et al. A cutterhead energy-saving technique for shield tunneling machines based on load characteristic prediction[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(5): 418-426.
[9] YANG Hua-yong, SHI Hu, GONG Guo-fang, et al. Electro-hydraulic proportional control of thrust system for shield tunneling machine[J]. Automation in Construction, 2009, 18(7): 950-956.
[10] 余佑官.盾构推进电液控制系统研究[D].杭州: 浙江大学机械与能源工程学院, 2006: 10-15. YU You-guan. Research of shield tunneling thrust electro-hydraulic control system[D]. Hangzhou: Zhejiang University, College of Mechanical and Energy Engineering, 2006: 10-15.
[11] 刘统, 龚国芳, 张振, 等. TBM试验台刀盘混合驱动系统设计与仿真分析[J]. 工程设计学报, 2015, 22(5): 438-444. LIU Tong, GONG Guo-fang, ZHANG Zhen, et al. Design and simulation analysis of hybrid cutterhead driving system for TBM test bed[J]. Chinese Journal of Engineering Design, 2015, 22(5): 438-444.
[12] HUANG T, WANG X, LIU H, et al. Force analysis of an open TBM gripping-thrusting-regripping mechanism[J]. Mechanism & Machine Theory, 2016, 98: 101-113.
[13] 彭欢, 张怀亮, 袁坚, 等.硬岩掘进机比例调速阀选型方法[J].机械工程学报, 2014, 50(21): 92-98. PENG Huan, ZHANG Huai-liang, YUAN Jian, et al. Tunnel boring machine proportional flow control valve Selection method[J]. Journal of Mechanical Engineering, 2014, 50(21): 92-98.
[1] 王春霖,刘畅,杨华,覃鸿,陈国柱. 用于油气勘探的电代油驱动装置系统设计与分析[J]. 工程设计学报, 2022, 29(2): 220-230.
[2] 任雯, 赖森财. 压电式提花经编机自升压节能控制电路设计[J]. 工程设计学报, 2020, 27(3): 326-331.
[3] 王飞, 龚国芳, 秦永峰. 转速受限条件下TBM刀盘混合驱动系统控制器设计[J]. 工程设计学报, 2019, 26(6): 722-727.
[4] 凌静秀, 孙伟, 杨晓静, 童昕. 多点分布载荷下TBM刀盘系统振动响应分析[J]. 工程设计学报, 2017, 24(3): 317-322.
[5] 谢苗, 刘治翔, 毛君. 立体停车位液压系统控制策略及节能控制技术研究[J]. 工程设计学报, 2017, 24(1): 115-120.
[6] 傅斯龙, 赵宏强, 张立斌, 段焱辉. 液压凿岩机回弹缓冲装置设计与实验研究[J]. 工程设计学报, 2016, 23(5): 513-520.
[7] 朱石沙, 吴彦波, 匡萍, 罗炎热. 新型负载敏感平衡阀设计与装机试验[J]. 工程设计学报, 2016, 23(4): 396-400.
[8] 赵宏强, 傅斯龙, 周茂贤, 陈庆. 液压凿岩机配流阀零位开口设计与实验研究[J]. 工程设计学报, 2016, 23(3): 288-294.
[9] 陆峰, 张弛, 孙健, 田军兴, 刘敏, 吴玉厚. 基于TBM双滚刀破岩仿真的实验研究[J]. 工程设计学报, 2016, 23(1): 41-48.
[10] 刘 统,龚国芳,张 振,彭 左,吴伟强. TBM试验台刀盘混合驱动系统设计与仿真分析[J]. 工程设计学报, 2015, 22(5): 438-444.
[11] 毛 君,杨振华,卢进南,谢 苗. 迈步式超前支护装备过渡过程支撑力控制系统设计[J]. 工程设计学报, 2015, 22(5): 387-393.
[12] 张 振,龚国芳,饶云意,吴伟强,刘 统. TBM试验台支撑推进液压系统设计与仿真分析[J]. 工程设计学报, 2015, 22(5): 324-329.
[13] 张 振,龚国芳,饶云意,吴伟强,刘 统. TBM试验台支撑推进液压系统设计与仿真分析[J]. 工程设计学报, 2015, 22(4): 324-329.
[14] 毛 君,杨振华,卢进南,谢 苗. 迈步式超前支护装备过渡过程支撑力控制系统设计[J]. 工程设计学报, 2015, 22(4): 387-393.
[15] 杨忠炯,鲁耀中,周立强,李洪宾. 基础振动下TBM推进液压系统工作特性研究[J]. 工程设计学报, 2015, 22(3): 278-283.