Please wait a minute...
工程设计学报  2017, Vol. 24 Issue (2): 174-181    DOI: 10.3785/j.issn.1006-754X.2017.02.008
设计理论与方法学     
新型铁路隧道落煤吸尘装置吸煤特性仿真分析与试验验证
杨伟杰1,2, 孟文俊1,2, 邬思敏1,2, 刘宝林1,2, 齐向东1
1. 太原科技大学 机械工程学院, 山西 太原 030024;
2. 智能物流装备山西省重点实验室, 山西 太原 030024
Simulation analysis and experimental verification of coal suction characteristics of the new railway tunnel fallen coal dust collection device
YANG Wei-jie1,2, MENG Wen-jun1,2, WU Si-min1,2, LIU Bao-lin1,2, QI Xiang-dong1
1. School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China;
2. Shanxi Key Laboratory of Intelligent Logistics Equipment, Taiyuan 030024, China
 全文: PDF(2610 KB)   HTML
摘要:

由于空气扰动,运煤专用列车途经隧道进出口时会出现大面积落煤现象,针对长距离清理隧道落煤面临的人工清理效率低、成本高等难题,设计了一种由1根主输送煤料管和多根吸煤支管组成的新型铁路隧道落煤吸尘装置,用于清理颗粒小、质量轻的铁路隧道落煤。在对主输送煤料管设计中,首先利用欧拉-拉格朗日法建立了输煤管道中的气固两相流模型;其次基于Fluent有限元仿真研究了煤粒入射角和定长管道上多个支管间距对主输送煤料管内流场的影响,分析煤粒最佳入射角以及主输送煤料管上安装吸煤支管数量的最优值;最后通过现场试验对有限元仿真结果进行了验证。仿真和试验结果表明:煤粒入射角α在小于45°时主输送煤料管压降小,颗粒流可获得较大的水平输送速度;支管间距在750 mm附近时,水平输送速度波动范围小且煤料的输送量明显大于其余各组,更加利于铁路隧道落煤的输送。研究结果对改进主输送煤料管结构形式、提高输送隧道落煤效率以及优化铁路隧道落煤吸尘装置具有重要意义。

关键词: 气固两相流数值模拟管道    
Abstract:

Due to air turbulence, large areas of coal will fall when the special coal-transportation trains pass the tunnel exits and entrances. Aiming at the problems of low efficiency and high cost of manual cleaning for long distance coal cleaning in the tunnel, a new railway tunnel fallen coal dust collection device which was composed of a main conveying coal feeding pipe and multiple branch pipes of coal suction was designed. It was used to clean the small particles and lightweight railway tunnel fallen coal. Firstly, the gas-solid two-phase flow model based on the Euler-Lagrange approach for the design of the main conveying coal feeding pipe was established in the coal conveying pipelines. Secondly, the effect of the coal particles' incident angle and multiple branch pipe spacing on the main coal conveying pipe flow field, which was based on Fluent finite element simulation software, was studied. What was more, the optimal angle of incidence and the optimal value of the number of branch coal suction pipe, which was installed on the main conveying pipe, were analyzed. Finally, the finite element simulation was verified by field test. Simulation and experimental results showed that it was more conducive to the railway tunnel fallen coal transportation when coal particles' incident angle was less than 45° and the branch pipe spacing was in the vicinity of 750 mm. For that when incident angle was less than 45°, the main conveying coal pipe pressure-drop became weaker and particle flow could obtain large horizontal transport velocity. And when the branch pipe spacing was in the vicinity of 750 mm, the horizontal transport velocity had a smaller fluctuation range and the transportation of coal was larger than that of the other groups. The research results are of great significance to improve the structure of the main conveying coal pipe, increase the efficiency of tunnel coal conveying and optimize the railway tunnel coal dust collection device.

Key words: gas-solid two-phase flow    numerical simulation    pipe
收稿日期: 2016-09-29 出版日期: 2017-04-28
CLC:  TH232  
基金资助:

国家自然科学基金面上项目(51575370);山西省煤基重点科技攻关项目(MJ2014-09,MJ2014-02);太原科技大学校研究生科技创新项目(20151023)

通讯作者: 孟文俊(1953-),男,山西太原人,教授,博士生导师,博士,从事散料输送、机电液一体化研究,E-mail:tyustmwj@126.com     E-mail: tyustmwj@126.com
作者简介: 杨伟杰(1990-),男,山西长治人,硕士生,从事连续输送设计研究,E-mail:18734862643@163.com,http://orcid.org//0000-002-5769-7238
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨伟杰
孟文俊
邬思敏
刘宝林
齐向东

引用本文:

杨伟杰, 孟文俊, 邬思敏, 刘宝林, 齐向东. 新型铁路隧道落煤吸尘装置吸煤特性仿真分析与试验验证[J]. 工程设计学报, 2017, 24(2): 174-181.

YANG Wei-jie, MENG Wen-jun, WU Si-min, LIU Bao-lin, QI Xiang-dong. Simulation analysis and experimental verification of coal suction characteristics of the new railway tunnel fallen coal dust collection device[J]. Chinese Journal of Engineering Design, 2017, 24(2): 174-181.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2017.02.008        https://www.zjujournals.com/gcsjxb/CN/Y2017/V24/I2/174

[1] 王旭荣.重载铁路隧道清扫系统的研究与应用[J].科技情报开发与经济,2011,21(17):192-194. WANG Xu-rong. Research on and application of heavy haul railway's tunnel cleaning system[J]. Sci-Tech Information Development & Economy, 2011, 21(17):192-194.
[2] 史天亮.铁路道床吸污车吸尘机理分析及吸尘效果数值模拟[J].铁道建筑,2014(4):135-138. SHI Tian-liang. Aspiration of railway solid pollution car mechanism analysis and numerical simulation of dust collection effect[J]. Railway Engineering, 2014(4): 135-138.
[3] 肖益民,柳波,范永超.Y型喉管流场分析及结构优化[J].计算机仿真,2015,32(5):270-274. XIAO Yi-min,LIU Bo,FAN Yong-chao. Analysis of flow field in Y-type pipe and optimization of its structure[J]. Computer Simulation, 2015, 32(5):270-274.
[4] 邹杰.基于Fluent的三通内流体流场模拟分析研究[D].上海:华东理工大学化工学院,2014:39-47. ZOU Jie. Simulation and analysis on fluid folw field in tee based on Fluend soft[D]. Shanghai: East China University of Science and Technology, School of Chemical Engineering, 2014: 39-47.
[5] 陶文铨.数值传热学[M].西安:西安交通大学出版社,2001:185-324. TAO Wen-quan. Numerical heat transfer[M]. Xi'an: Xi'an Jiaotong University Press, 2001: 185-324.
[6] EL-BEHERY S M, HAMED M H, EL-KADI M A, et al. CFD prediction of air-solid flow in 180° curved duct[J]. Powder Technology, 2009, 191(1/2):130-142.
[7] EGHLIMI A, KOUZOUBOY A, FLETCHER C A J. A new RNG-based two-equation model for predicting turbulent gas-particle flows[C]//Proc Conf on CFD in Mineral & Metal Processing and Power Generation Industries. Melbourne, Jul. 3-4, 1997.
[8] LIN K C, KENNEDY P, JACKSON T. Structures of water jets in a Mach 1.94 supersonic cross flow[C]// AIAA Meeting and Exhibit, Reno, NN, Jan. 5-8, 2004.
[9] WU P K, KIRKENDALL K A, FULLER R P, et al. Breakup processes of liquid jets in subsonic cross flows[J]. Journal of Propulsion & Power, 2015, 13(1):64-73.
[10] OEVERRNANN M, GERBER S, BEHRENDT F. Euler-Lagrange/DEM simulation of wood gasification in a bubbling fluidized bed reactor[J]. Particuology, 2009, 7(4):307-316.
[11] 袁竹林,徐益谦.用拉格朗日法对气固两相流动的数值模拟[J].发电设备,1997(6):27-29. YUAN Zhu-lin, XU Yi-qian. Numerical simulation of gas-solid two phase flows with Lagrange's theorem[J]. Power Equipment, 1997(6): 27-29.
[12] MURTHY B N, GHADGE R S, JOSHI J B. CFD simulations of gas-liquid-solid stirred reactor: prediction of critical impeller speed for solid suspension[J]. Chemical Engineering Science, 2007, 62(24):7184-7195.
[13] TAMBURINI A, BRUCATO A, CIPOLLINA A, et al. CFD predictions of sufficient suspension conditions in solid-liquid agitated tanks[J]. International Journal of Nonlinear Sciences & Numerical Simulation, 2012, 13(6):427-443.
[14] ELBEHERY S M, HAMED M H, ELKADI M A, et al. Numerical simulation and CFD-based correlation of erosion threshold gas velocity in pipe bends[J]. CFD Letters, 2010, 2(1): 39-53.
[15] WANG J. A CFD based correlation for erosion factor for long-radius elbows and bends[J]. Journal of Energy Resources Technology, 2003, 125(1):26-34.
[16] CHUNG T J. Compuational fluid dynamics [M]. Cambridge: Cambridge University Press, 2002: 161-168.
[17] CHEN P, SANYAL J, DUDUKOVIC M P. Numerical simulation of bubble columns flows: effect of different breakup and coalescence closures[J]. Chemical Engineering Science, 2005, 60(4):1085-1101.
[18] SARTHOU A, VINCENT S, CALTAGIRONE J P, et al. Eulerian-Lagrangian grid coupling and penalty methods for the simulation of multiphase flows interacting with complex objects[J]. International Journal for Numerical Methods in Fluids, 2008, 56(8):1093-1099.
[19] 张淼.基于颗粒轨道模型的高速列车多相流数值模块和分析[D].杭州:浙江大学航空航天学院,2011:7-19. ZHANG Miao.Numerical simulation and analysis of high-speed train in multiphase flow based on particle orbit model scheme[D]. Hangzhou: Zhejiang University, School of Aeronautics and Astronautics, 2011: 7-19.
[1] 李岳,邓云蛟,敖然,侯雨雷,曾达幸. 可适径调整管道清淤机器人结构设计与运动分析[J]. 工程设计学报, 2023, 30(3): 353-361.
[2] 朱锦翊, 张春燕, 卢晨晖. 基于螺旋理论的管道蠕动并联机构的奇异性研究[J]. 工程设计学报, 2021, 28(3): 287-295.
[3] 熊伟, 葛志华, 庞乔, 李曼迪, 王友. 轮毂轴承单元过盈量理论设计及试验研究[J]. 工程设计学报, 2021, 28(1): 41-47.
[4] 章亦聪, 朱玮, 吴玉国, 时礼平. 莱洛三角形微孔织构化端面密封性能数值模拟[J]. 工程设计学报, 2020, 27(1): 103-110.
[5] 侯勇俊, 李芬, 吴先进, 刘有平. 负压钻井液振动筛气液喷射器性能的数值模拟研究[J]. 工程设计学报, 2019, 26(4): 423-432.
[6] 张晓东, 陈龙. 基于冲蚀磨损理论的新型内防喷器阀座锥角研究[J]. 工程设计学报, 2019, 26(3): 287-298.
[7] 钟功祥, 邹迪, 张兴. 基于CFD与ADAMS的三角转子气动机设计与仿真[J]. 工程设计学报, 2019, 26(3): 305-314.
[8] 黄羽鹏, 张家波, 雷正保. 基于满意度函数的新型逃生管道多目标稳健性设计[J]. 工程设计学报, 2019, 26(1): 20-28.
[9] 李舜酩, 王一博, 顾信忠. 基于流场分析的某割草车节能优化设计[J]. 工程设计学报, 2018, 25(6): 683-689.
[10] 张园, 彭振华, 高定祥, 任海涛, 唐一鑫. 芯管式稠油掺稀混合器设计及其掺混性能研究[J]. 工程设计学报, 2018, 25(5): 510-517.
[11] 邓嵘, 侯凯, 李孟华, 李向东. 混合式单牙轮钻头破岩性能研究[J]. 工程设计学报, 2018, 25(3): 262-269.
[12] 张露, 武鹏, 吴大转, 洪伟荣. 燃油系统旋涡泵压力脉动的控制研究[J]. 工程设计学报, 2017, 24(4): 395-402.
[13] 李文娟,陆胜勇,王汝佩,李晓东,严建华. 柱状型煤管道水力输送试验系统的设计研究[J]. 工程设计学报, 2015, 22(6): 596-601.
[14] 夏 丽,武 鹏,吴大转. 蜗壳回流孔对自吸泵性能的影响[J]. 工程设计学报, 2015, 22(3): 284-289.
[15] 朱桂华,马凯,唐啸,高明泉,朱宏斌. 错位桨对污泥固液两相流混合的数值模拟[J]. 工程设计学报, 2015, 22(1): 49-53.