机器人与机构设计 |
|
|
|
|
介电弹性体驱动的爬行-跳跃机器人研究 |
潘锋1( ),阮佳平2,唐威2( ),邹俊2 |
1.浙江舜宇智能光学技术有限公司,浙江 杭州 310051 2.浙江大学 流体动力基础件与机电系统全国重点实验室,浙江 杭州 310058 |
|
Research on crawling-jumping robot driven by dielectric elastomers |
Feng PAN1( ),Jiaping RUAN2,Wei TANG2( ),Jun ZOU2 |
1.Zhejiang Sunny Optical Intelligence Technology Co. , Ltd. , Hangzhou 310051, China 2.State Key Laboratory of Fundamental Components of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China |
引用本文:
潘锋,阮佳平,唐威,邹俊. 介电弹性体驱动的爬行-跳跃机器人研究[J]. 工程设计学报, 2025, 32(3): 316-325.
Feng PAN,Jiaping RUAN,Wei TANG,Jun ZOU. Research on crawling-jumping robot driven by dielectric elastomers[J]. Chinese Journal of Engineering Design, 2025, 32(3): 316-325.
链接本文:
https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.05.127
或
https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I3/316
|
[11] |
刘磊, 温涛, 韩伟涛, 等. 管道内软体爬行机器人的设计与性能分析[J/OL]. 工程设计学报, 2024, 31(5): 614-622. LIU L, WEN T, HAN W T, et al. Design and performance analysis of fast crawling soft pipeline robot[J]. Chinese Journal of Engineering Design, 2024, 31(5): 614-622.
|
[2] |
吴业辉, 刘梦凡, 白瑞玉, 等. 微小型跳跃机器人: 仿生原理,设计方法与驱动技术[J]. 动力学与控制学报, 2023, 21(12): 37-52. WU Y H, LIU M F, BAI R Y, et al. A review of small-scale jumping robots: bio-mimetic mechanism, mechanical design and actuation[J]. Journal of Dynamics and Control, 2023, 21(12): 37-52.
|
[3] |
KIM Y, VAN DEN BERG J, CROSBY A J. Autonomous snapping and jumping polymer gels[J]. Nature Materials, 2021, 20(12): 1695-1701.
|
[4] |
莫小娟, 葛文杰, 赵东来, 等. 微小型跳跃机器人研究现状综述[J]. 机械工程学报, 2019, 55(15): 109-123. doi:10.3901/jme.2019.15.109 MO X J, GE W J, ZHAO D L, et al. Review: research status of miniature jumping robot[J]. Journal of Mechanical Engineering, 2019, 55(15): 109-123.
doi: 10.3901/jme.2019.15.109
|
[5] |
李贺, 王禹, 杜小振, 等. 一种可跳跃的月面移动机器人系统设计[J]. 深空探测学报(中英文), 2020, 7(3): 304-310. LI H, WANG Y, DU X Z, et al. Design of a lunar mobile robot with jumping ability[J]. Journal of Deep Space Exploration, 2020, 7(3): 304-310.
|
[6] |
熊勇刚, 王延炜, 陈鹏涛, 等. 新型轮足跳跃机器人的结构设计及实现[J]. 机械工程与自动化, 2023(1): 121-123. XIONG Y G, WANG Y W, CHEN P T, et al. Structural design and realization of new wheel-footed jumping robot[J]. Mechanical Engineering & Automation, 2023(1): 121-123.
|
[7] |
张涛, 王开松, 唐威, 等. 电流体泵驱动的柔性弯曲执行器的设计及分析[J]. 工程设计学报, 2023, 30(4): 467-475. ZHANG T, WANG K S, TANG W, et al. Design and analysis of flexible bending actuator driven by electrohydrodynamic pumps[J]. Chinese Journal of Engineering Design, 2023, 30(4): 467-475.
|
[8] |
TANG W, ZHONG Y D, XU H X, et al. Self-protection soft fluidic robots with rapid large-area self-healing capabilities[J]. Nature Communications, 2023, 14(1): 6430.
|
[9] |
GUO X Y, TANG W, QIN K C, et al. Powerful UAV manipulation via bioinspired self-adaptive soft self-contained gripper[J]. Science Advances, 2024, 10(19): eadn6642.
|
[10] |
LI J J, YU K Q, WANG G, et al. Recent development of jumping motions based on soft actuators[J]. Advanced Functional Materials, 2023, 33(35): 2300156.
|
[11] |
JEON J, CHOI J C, LEE H, et al. Continuous and programmable photomechanical jumping of polymer monoliths[J]. Materials Today, 2021, 49: 97-106.
|
[12] |
LI M T, WANG X, DONG B, et al. In-air fast response and high speed jumping and rolling of a light-driven hydrogel actuator[J]. Nature Communications, 2020, 11(1): 3988.
|
[13] |
XU C Y, YANG Z L, TAN S W K, et al. Magnetic miniature actuators with six-degrees-of-freedom multimodal soft-bodied locomotion[J]. AdvancedIntelligent Systems, 2022, 4(4): 2100259.
|
[14] |
HU W Q, LUM G Z, MASTRANGELI M, et al. Small-scale soft-bodied robot with multimodal locomotion[J]. Nature, 2018, 554: 81-85.
|
[15] |
KELLARIS N, ROTHEMUND P, ZENG Y, et al. Spider-inspired electrohydraulic actuators for fast, soft-actuated joints[J]. Advanced Science, 2021, 8(14): 2100916.
|
[16] |
HUANG X N, KUMAR K, JAWED M K, et al. Highly dynamic shape memory alloy actuator for fast moving soft robots[J]. Advanced Materials Technologies, 2019, 4(4): 1800540.
|
[17] |
AHN C, LIANG X D, CAI S Q. Bioinspired design of light-powered crawling, squeezing, and jumping untethered soft robot[J]. Advanced Materials Technologies, 2019, 4(7): 1900185.
|
[18] |
陈哲琪, 罗英武. 介电弹性体驱动器: 从分子、材料到器件[J]. 中国科学: 化学, 2024, 54(11): 2183-2198. doi:10.1360/ssc-2024-0148 CHEN Z Q, LUO Y W. Dielectric elastomer actuators: molecules, materials, and devices[J]. Scientia Sinica Chimica), 2024, 54(11): 2183-2198.
doi: 10.1360/ssc-2024-0148
|
[19] |
赵福腾, 胡华, 赵维玮. 基于液态金属电极卷制态介电弹性体驱动器[J]. 现代制造工程, 2025(3): 84-89, 98. ZHAO F T, HU H, ZHAO W W. Rolling dielectric elastomer actuator based on liquid metal electrode[J]. Modern Manufacturing Engineering, 2025(3): 84-89, 98.
|
[20] |
ZHU Y B, LIU N, CHEN Z Q, et al. 3D-printed high-frequency dielectric elastomer actuator toward insect-scale ultrafast soft robot[J]. ACS Materials Letters, 2023, 5(3): 704-714.
|
[21] |
WANG L T, ZHUO J S, PENG J B, et al. A stretchable soft pump driven by a heterogeneous dielectric elastomer actuator[J]. Advanced Functional Materials, 2024, 34(52): 2411160.
|
[22] |
LI T F, LI G R, LIANG Y M, et al. Fast-moving soft electronic fish[J]. Science Advances, 2017, 3(4): e1602045.
|
[23] |
PENG J B, ZHUO J S, DONG H F, et al. Dielectric elastomer actuators with low driving voltages and high mechanical outputs enabled by a scalable ultra-thin film multilayering process[J]. Advanced Functional Materials, 2024, 34(48): 2411801.
|
[24] |
TANG C, DU B Y, JIANG S W, et al. A pipeline inspection robot for navigating tubular environments in the sub-centimeter scale[J]. Science Robotics, 2022, 7: eabm8597.
|
[25] |
JI X B, LIU X C, CACUCCIOLO V, et al. An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators[J]. Science Robotics, 2019, 4(37): eaaz6451.
|
[26] |
GODABA H, LI J S, WANG Y Z, et al. A soft jellyfish robot driven by a dielectric elastomer actuator[J]. IEEE Robotics and Automation Letters, 2016, 1(2): 624-631.
|
[27] |
GU G Y, ZOU J, ZHAO R K, et al. Soft wall-climbing robots[J]. Science Robotics, 2018, 3(25): eaat2874.
|
[28] |
SHI Y, ASKOUNIS E, PLAMTHOTTAM R, et al. A processable, high-performance dielectric elastomer and multilayering process[J]. Science, 2022, 377: 228-232.
|
[29] |
ZHAO J W, WANG S, MCCOUL D, et al. Bistable dielectric elastomer minimum energy structures[J]. Smart Material Structures, 2016, 25(7): 075016.
|
[30] |
LIU Y, GAO M, MEI S F, et al. Ultra-compliant liquid metal electrodes with in-plane self-healing capability for dielectric elastomer actuators[J]. Applied Physics Letters, 2013, 103(6): 064101.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|