Please wait a minute...
工程设计学报  2024, Vol. 31 Issue (2): 221-229    DOI: 10.3785/j.issn.1006-754X.2024.03.179
机器人与机构设计     
气动扇形腔室软体弯曲驱动器的设计及分析
汪启亮(),李永起(),刘通,洪永烽,徐美娟
江西理工大学 机电工程学院,江西 赣州 341000
Design and analysis of pneumatic sector chamber soft bending driver
Qiliang WANG(),Yongqi LI(),Tong LIU,Yongfeng HONG,Meijuan XU
School of Mechanical & Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
 全文: PDF(3732 KB)   HTML
摘要:

为了设计结构简单、制作方便、易于建模的大角度弯曲驱动器,提出了一种扇形腔室结构的软体多腔室弯曲驱动器。该驱动器由超弹性材料制作而成,并在Yeoh本构模型的基础上,建立了输入空气压力与弯曲角的函数关系。利用Abaqus有限元分析软件对驱动器在不同驱动气压下的弯曲变形进行了仿真,分析了腔室端面半径、腔室壁厚、腔室端面夹角、凹槽深度、底层厚度等结构参数对驱动器弯曲角度的影响。制作了软体驱动器,搭建了气动控制实验平台,测试了驱动器的弯曲性能,输入气压为0~65 kPa,弯曲角度为0~218°,仿真结果与实验结果基本吻合。基于弯曲驱动器设计了一种夹爪长度可调的软体夹持器,测试了其对不同尺寸、形状、质量的物体的夹持效果,实验结果验证了所设计驱动器和夹持器的实用性,表明驱动器具有良好的弯曲性能。研究结果可以为软体驱动器的进一步研究提供参考。

关键词: 软体机器人多腔室弯曲驱动器扇形腔室    
Abstract:

In order to design a large angle bending actuator with a simple structure, convenient production and easy modeling, a soft multi chamber bending actuator with a fan-shaped chamber structure was proposed. The actuator was made of super-elastic material. The functional relationship between input air pressure and bending angle was established based on the Yeoh model. The simulation of the bending actuator under different air pressures was carried out using Abaqus. The effects of structural parameters such as chamber end radius, chamber wall thickness, the angle between chamber ends, groove depth, and bottom thickness on the bending angle were analyzed. The soft actuator was manufactured and an experimental platform was built. The bending performance of the actuator was tested. The input air pressure was 0-65 kPa, and the bending angle was 0-218°. The simulation results were basically consistent with the experimental results. A flexible gripper with adjustable claw length was designed based on a bending driver, and its clamping effect on objects of different sizes, shapes, and masses was tested. The experimental results verified the practicality of the designed driver and gripper, and the driver had good bending performance. The research results can provide reference for further research on software drivers.

Key words: soft robot    multi-chamber    bending actuator    sector-shaped chamber
收稿日期: 2023-06-15 出版日期: 2024-04-26
CLC:  TH 138  
基金资助: 国家自然科学基金资助项目(51905239);江西省自然科学基金资助项目(20181BAB216019);江西省研究生创新专项资金项目(YC2022-S673)
通讯作者: 汪启亮     E-mail: wangqiliang@jxust.edu.cn;1696748823@qq.com
作者简介: 李永起(1996—),男,河北沧州人,硕士生,从事软体机器人研究,E-mail: 1696748823@qq.com,https://orcid.org/0009-0001-9509-5991
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
汪启亮
李永起
刘通
洪永烽
徐美娟

引用本文:

汪启亮,李永起,刘通,洪永烽,徐美娟. 气动扇形腔室软体弯曲驱动器的设计及分析[J]. 工程设计学报, 2024, 31(2): 221-229.

Qiliang WANG,Yongqi LI,Tong LIU,Yongfeng HONG,Meijuan XU. Design and analysis of pneumatic sector chamber soft bending driver[J]. Chinese Journal of Engineering Design, 2024, 31(2): 221-229.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.03.179        https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I2/221

图1  气动软体弯曲驱动器的结构
图2  驱动器模型的变形前后
图3  驱动器弯曲角度的仿真值与理论值
图4  不同腔室结构驱动器的弯曲性能对比
图5  不同腔室端面半径下驱动器的弯曲角度
图6  不同腔室壁厚下驱动器的弯曲角度
图7  不同腔室端面夹角下驱动器的弯曲角度
图8  不同凹槽深度下驱动器的弯曲角度
图9  不同底层厚度下驱动器的弯曲角度
参数数值
腔室端面半径/mm9
腔室壁厚/mm1
腔室端面夹角/(°)30
凹槽深度/mm1
底层厚度/mm3
表1  弯曲驱动器的尺寸参数
图10  驱动器的制作流程图
图11  驱动器气动控制的实验平台
图12  驱动器弯曲性能的实验结果
图13  驱动器弯曲角度理论值、仿真值与实验值的对比
图14  夹持器夹持物体的实验结果
1 曹玉君,尚建忠,梁科山,等.软体机器人研究现状综述[J].机械工程学报,2012,48(3): 25-33. doi:10.3901/jme.2012.03.025
CAO Y J, SHANG J Z, LIANG K S, et al .Review of soft-bodied robots [J]. Journal of Mechanical Engineering, 2012, 48(3): 25-33.
doi: 10.3901/jme.2012.03.025
2 REN L, LI B, WEI G, et al. Biology and bioinspiration of soft robotics: actuation, sensing, and system integration [J]. Science, 2021, 24(9): 103075.
3 DE FALCO I, CIANCHETTI M, MENCIASSI A. A soft multi-module manipulator with variable stiffness for minimally invasive surgery [J]. Bioinspiration & Biomimetics, 2017, 12(5): 056008.
4 SHANG J, NOONAN D P, PAYNE C, et al. An articulated universal joint based flexible access robot for minimally invasive surgery [C]// 2011 IEEE International Conference on Robotics and Automation. Shanghai, May 9-13, 2011.
5 VERMA M S, AINLA A, YANG D, et al. A soft tube-climbing robot [J]. Soft Robotics, 2018, 5(2): 133-137.
6 ROZENLEVY S, MESSNER W, TRIMMER B A. The design and development of branch bot: a branch-crawling, caterpillar-inspired, soft robot [J]. The International Journal of Robotics Research, 2021, 40(1): 24-36.
7 WEHNER M, TRUBY R L, FITZGERALD D J, et al. An integrated design and fabrication strategy for entirely soft, autonomous robots [J]. Nature, 2016, 536(7617): 451-455.
8 POLYGERINOS P, WANG Z, GALLOWAY K C, et al. Soft robotic glove for combined assistance and at-home rehabilitation [J]. Robotics and Autonomous Systems, 2015, 73: 135-143.
9 CONNELLY L, STOYKOV M E, JIA Y, et al. Use of a pneumatic glove for hand rehabilitation following stroke [C]// 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Minneapolis, Sept. 2-6, 2009.
10 FOLLADOR M, CONN A T, ROSSITER J. Bistable minimum energy structures (BiMES) for binary robotics [J]. Smart Materials and Structures, 2015, 24(6): 065037.
11 HAO Y, WANG T, XIE Z, et al. A eutectic-alloy-infused soft actuator with sensing, tunable degrees of freedom, and stiffness properties [J]. Journal of Micromechanics and Micro Engineering, 2018, 28(2): 024004.
12 XIAO W, DU X, CHEN W, et al. Cooperative collapse of helical structure enables the actuation of twisting pneumatic artificial muscle [J]. International Journal of Mechanical Sciences, 2021, 201: 106483.
13 GUO L, LI K, CHENG G, et al. Design and experiments of pneumatic soft actuators[J]. Robotica, 2021, 39(10): 1806-1815.
14 CONNOLLY F, POLYGERINOS P, WALSH C J, et al. Mechanical programming of soft actuators by varying fiber angle [J]. Soft Robotics, 2015, 2(1): 26-32.
15 刘亭羽.仿生气动软体蠕动机器人的研究[D].哈尔滨:哈尔滨工程大学,2018.
LIU T Y. Research on bionic pneumatic peristaltic soft robot[D]. Harbin: Harbin Engineering University, 2018.
16 XIE Z, DOMEI A G, AN N, et al. Octopus arm-inspired tapered soft actuators with suckers for improved grasping[J]. Soft Robotics, 2020, 7(5): 639-648.
17 LIU M, HAO L, ZHANG W, ZHAO Z. A novel design of shape-memory alloy-based soft robotic gripper with variable stiffness [J]. International Journal of Advanced Robotic Systems. 2020, 17(1): 1-12.
18 YIN J, HELLEBREKERS T, MAJIDI C. Closing the loop with liquid-metal sensing skin for autonomous soft robot gripping[C]// 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft). Virtual, May 31-Aug. 31, 2020.
19 ANDERSON A, GISBY A, MCKAY G, et al. Multi-functional dielectric elastomer artificial muscles for soft and smart machines [J]. Journal of Applied Physics, 2012, 112(4): 41-49.
20 HUUNGUYEN C, ALICI G, MUTLU R. A compliant translational mechanism based on dielectric elastomer actuators[J]. Journal of Mechanical Design, 2014, 136(6): 061009.
21 BARTLETT W, TOLLEY T, OVERVELDE B, et al. A 3D-printed, functionally graded soft robot powered by combustion[J]. Science, 2015, 349(6244): 161-165.
22 MICHAEL W, RYAN T, DANIEL J, et al. An integrated design and fabrication strategy for entirely soft, autonomous robots[J]. Nature, 2016, 536(7617): 451-460.
23 MANTI M, HASSAN T, PASSETTI G, et al. A bioinspired soft robotic gripper for adaptable and effective grasping[J]. Soft Robot, 2015, 2(3): 107-116.
24 DONG X, AXINTE A, PALMER D, et al. Development of a slender continuum robotic system for on-wing inspection/repair of gas turbine engines [J]. Robotics and Computer Integrated Manufacturing, 2017, 44(1): 218-229.
25 隋立明,席作岩,刘亭羽. 多腔体式仿生气动软体驱动器的设计与制作[J]. 工程设计学报, 2017, 24(5): 511-517. doi:10.3785/j.issn.1006-754X.2017.05.004
SUI L M, XI Z Y, LIU T Y. Design and fabrication of a multi-cavity bionic pneumatic soft actuator [J]. Journal of Engineering Design, 2017, 24(5): 511-517.
doi: 10.3785/j.issn.1006-754X.2017.05.004
26 ROLF M, STEIL J J. Constant curvature continuum kinematics as fast approximate model for the Bionic Handling Assistant [C]// IEEE/RSJ International Conference on Intelligent Robots & Systems. Vilamoura, Oct. 7-12, 2012.
27 刘庚.一种变刚度柔性手爪设计及其性能研究[D].西安:西安理工大学,2020. doi:10.7498/aps.69.20191508
LIU G. Design and performance of a flexible hand claw with variable stiffness[D]. Xi’an: Xi'an University of Technology, 2020.
doi: 10.7498/aps.69.20191508
28 孙沂琳,张秋菊,陈宵燕.气动软体驱动器设计与建模[J].食品与机械,2018, 34(11): 101-105.
SUN Y L, ZHANG Q J, CHEN X Y. Design and modeling of pneumatic soft body drive [J]. Food and Machinery, 2018, 34(11): 101-105.
29 李明鑫,宁萌,陈海卫,等.一种新型软体驱动器的设计与研究[J].机械科学与技术,2021, 40(1): 33-39.
LI M X, NING M, CHEN H W, et al. Design and research of a new soft body drive[J]. Mechanical Science and Technology, 2021, 40(1): 33-39.
30 董虎,王保兴,李巍,等.基于单向气动驱动器的软体手变形机理[J].东华大学学报(自然科学版),2020, 46(2): 288-303.
DONG H, WANG B X, LI W, et al. Mechanism of soft hand deformation based on unidirectional pneumatic actuator [J]. Journal of Donghua University (Natural Science Edition), 2020, 46(2): 288-303.
[1] 隋立明, 席作岩, 刘亭羽. 多腔体式仿生气动软体驱动器的设计与制作[J]. 工程设计学报, 2017, 24(5): 511-517.