Please wait a minute...
工程设计学报  2024, Vol. 31 Issue (5): 670-680    DOI: 10.3785/j.issn.1006-754X.2024.04.132
整机和系统设计     
自走式三七联合收获机液压系统设计与试验研究
李漫漫1,2(),杨全合1,2,解开婷2,3,王媛1,2,徐东辉4,张兆国1,2()
1.昆明理工大学 现代农业工程学院,云南 昆明 650500
2.云南省高校中药材机械化工程研究中心,云南 昆明 650500
3.昆明理工大学 机电工程学院,云南 昆明 650500
4.齐齐哈尔大学 机电工程学院,黑龙江 齐齐哈尔 161000
Design and experimental study of hydraulic system of self-propelled Panax notoginseng combine harvester
Manman LI1,2(),Quanhe YANG1,2,Kaiting XIE2,3,Yuan WANG1,2,Donghui XU4,Zhaoguo ZHANG1,2()
1.Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, China
2.Research Center on Mechanization Engineering of Chinese Medicinal Materials of Yunnan Province, Kunming 650500, China
3.Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China
4.School of Mechanical and Electrical Engineering, Qiqihar University, Qiqihar 161000, China
 全文: PDF(4019 KB)   HTML
摘要:

针对丘陵山区三七收获劳动强度大、效率低及成本高等问题,开展自走式三七联合收获机液压系统研究。首先,对整机关键工作部件的液压系统进行理论分析、计算与设计,完成了液压元件选型。然后,利用AMESim软件建立液压系统仿真模型,开展各液压元件工作状态仿真分析,验证了液压系统设计方案的可行性。最后,制造样机并开展田间试验,完成了对整机液压系统工作性能的测试。试验结果显示:驱动一级升运链、振动轮、二级升运链与提升装置的液压马达的平均转速偏差分别为1.15%,2.05%,5.10%,4.09%;升降、倾角调节与倾卸液压缸的平均收回同步偏差率分别为0.63%,1.16%,0.62%,平均收回锁止偏差率分别为0.34%,0.66%,0.33%;倾卸液压缸的平均伸出同步偏差率与平均伸出锁止偏差率分别为0.56%,0.30%。结果表明,所设计的液压系统满足自走式三七联合收获机的作业要求,可为丘陵山区根茎类联合收获机液压系统的设计提供理论基础与参考。

关键词: 三七联合收获机液压系统仿真分析田间试验    
Abstract:

Aiming at the problems of high labor intensity, low efficiency and high cost of Panax notoginseng harvesting in hilly and mountainous areas, the hydraulic system of the self-propelled Panax notoginseng combine harvester was studied. Firstly, the hydraulic system of the key working components of the whole machine was theoretically analyzed, calculated and designed, and the selection for hydraulic components was completed. Then, the hydraulic system simulation model was established by AMESim software, and the simulation analysis for the working state of each hydraulic component was carried out to verify the feasibility of the hydraulic system design scheme. Finally, a prototype was manufactured and the field test was carried out to test the working performance of the hydraulic system of the whole machine. The test results showed that the average speed deviations of the hydraulic motors driving the first-stage lifting chain, the vibrating wheel, the second-stage lifting chain and the lifting device were 1.15%, 2.05%, 5.10% and 4.09%, respectively. The average retraction synchronization deviation rates of lifting, inclination adjustment and dumping hydraulic cylinders were 0.63%, 1.16% and 0.62%, respectively, and the average retraction locking deviation rates were 0.34%, 0.66% and 0.33%, respectively. The average extension synchronization deviation rate and the average extension locking deviation rate of dumping hydraulic cylinder were 0.56% and 0.30%, respectively. The results indicate that the designed hydraulic system can meet the operation requirements of self-propelled Panax notoginseng combine harvester, which can provide theoretical basis and reference for the design of the hydraulic system of rhizome combine harvesters in hilly and mountainous areas.

Key words: Panax notoginseng    combine harvester    hydraulic system    simulation analysis    field test
收稿日期: 2024-04-19 出版日期: 2024-10-30
CLC:  TH 137.9  
基金资助: 国家重点研发计划资助项目(2022YFD2002004);黑龙江省省属高等学校基本科研业务费科研项目(135509410)
通讯作者: 张兆国     E-mail: limanman@stu.kust.edu.cn;zzg@kust.edu.cn
作者简介: 李漫漫(1998—),女,硕士生,从事农业装备设计与制造研究,E-mail: limanman@stu.kust.edu.cn,https://orcid.org/0009-0007-1488-2867
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李漫漫
杨全合
解开婷
王媛
徐东辉
张兆国

引用本文:

李漫漫,杨全合,解开婷,王媛,徐东辉,张兆国. 自走式三七联合收获机液压系统设计与试验研究[J]. 工程设计学报, 2024, 31(5): 670-680.

Manman LI,Quanhe YANG,Kaiting XIE,Yuan WANG,Donghui XU,Zhaoguo ZHANG. Design and experimental study of hydraulic system of self-propelled Panax notoginseng combine harvester[J]. Chinese Journal of Engineering Design, 2024, 31(5): 670-680.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.04.132        https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I5/670

图1  自走式三七联合收获机三维模型
图2  自走式三七联合收获机液压系统总体原理1—过滤器;2—液压泵;3—电磁溢流阀;4—电磁换向阀;5—调速阀;6—电磁锁止阀;7—一级挖掘输送装置升降液压缸;8—一级升运链倾角调节液压缸;9—收集箱倾卸液压缸;10—电磁比例阀;11—一级升运链驱动液压马达;12—振动轮驱动液压马达;13—二级升运链驱动液压马达;14—提升装置驱动液压马达。
图3  自走式三七联合收获机液压系统控制框图
液压马达计算参数所选型号及相关参数
一级升运链驱动液压马达

最大扭矩:372.28 N·m

理论排量:289.02 mL/r

最高转速:114.65 r/min

型号:BMR-400

最大扭矩:418 N·m

理论排量:392.9 mL/r

最高转速:140 r/min

振动轮驱动液压马达

最大扭矩:178.76 N·m

理论排量:89.10 mL/r

最高转速:120.00 r/min

型号:BMR-125

最大扭矩:220 N·m

理论排量:120.9 mL/r

最高转速:440 r/min

二级升运链驱动液压马达

最大扭矩:99.17 N·m

理论排量:49.43 mL/r

最高转速:133.76 r/min

型号:BMR-100

最大扭矩:178 N·m

理论排量:98.2 mL/r

最高转速:551 r/min

提升装置驱动液压马达

最大扭矩:37.73 N·m

理论排量:18.81 mL/r

最高转速:254.78 r/min

型号:BMR-50

最大扭矩:89 N·m

理论排量:52.9 mL/r

最高转速:730 r/min

表1  各液压马达的计算参数与选型
液压缸计算参数所选型号及相关参数
一级挖掘输送装置升降液压缸

缸径:31.02 mm

杆径:17.42 mm

型号:HSG-63

缸径:63 mm

杆径:35 mm

行程:400 mm

一级升运链倾角调节液压缸

缸径:17.67 mm

杆径:9.92 mm

型号:HSG-40

缸径:40 mm

杆径:25 mm

行程:300 mm

收集箱倾卸液压缸

缸径:20.77 mm

杆径:11.66 mm

型号:HSG-80

缸径:80 mm

杆径:50 mm

行程:350 mm

表2  各液压缸的计算参数与选型
液压泵计算参数所选型号及相关参数
一级升运链驱动液压泵理论排量:30.03 mL/r

型号:CBS-S32

理论排量:32 mL/r

最高工作压力:25 MPa

液压缸驱动液压泵理论排量:20.08 mL/r
振动轮驱动液压泵理论排量:9.67 mL/r

型号:CBN-310

理论排量:10 mL/r

最高工作压力:20 MPa

二级升运链驱动液压泵理论排量:8.76 mL/r
提升装置驱动液压泵理论排量:8.99 mL/r
表3  各液压泵的计算参数与选型
图4  自走式三七联合收获机液压系统仿真模型1—过滤器;2—液压泵;3—电磁溢流阀;4—液压油;5—电磁换向阀;6—调速阀;7—电磁锁止阀;8—一级挖掘输送装置升降液压缸;9—一级升运链倾角调节液压缸;10—收集箱倾卸液压缸;11—电磁比例阀;12—一级升运链驱动液压马达;13—振动轮驱动液压马达;14—二级升运链驱动液压马达;15—提升装置驱动液压马达。
图5  一级升运链驱动液压泵的输入扭矩曲线
图6  一级升运链驱动液压泵的输出流量曲线
图7  一级升运链驱动液压马达的输出转速曲线
图8  一级升运链驱动液压马达的输出扭矩曲线
图9  振动轮驱动液压泵的输入扭矩与输出流量曲线
图10  振动轮驱动液压马达的输出转速与输出扭矩曲线
图11  二级升运链驱动液压泵的输入扭矩与输出流量曲线
图12  二级升运链驱动液压马达的输出转速与输出扭矩曲线
图13  提升装置驱动液压泵的输入扭矩与输出流量曲线
图14  提升装置驱动液压马达的输出转速与输出扭矩曲线
图15  升降液压缸的收回速度与位移曲线
图16  倾角调节液压缸的伸缩速度与位移曲线
图17  倾卸液压缸的伸缩速度与位移曲线
图18  自走式三七联合收获机测试现场
图19  液压马达的转速采集方式
图20  液压缸位移采集方式
试验序号一级升运链驱动液压马达振动轮驱动液压马达二级升运链驱动液压马达提升装置驱动液压马达
平均值115.97117.54140.58265.20
1117.16114.84144.69258.76
2115.82116.79140.57267.92
3116.63120.08137.82270.34
4114.89117.53138.03266.34
5115.34118.47141.78262.66
表4  液压马达最高转速测试结果 (r/min)
试验序号收回位移/mm收回时间/s收回速度/(mm/s)同步偏差/mm锁止偏差/mm
平均值393.172.22177.272.471.34
1392.452.21177.582.541.30
2396.622.26175.502.271.41
3390.272.19178.212.611.26
4393.952.22177.452.441.38
5392.572.21177.632.491.33
表5  升降液压缸收回状态下的工作性能测试结果
试验序号收回位移/mm收回时间/s收回速度/(mm/s)同步偏差/mm锁止偏差/mm
平均值291.332.39121.833.381.92
1290.102.37122.413.251.83
2292.952.44120.063.561.99
3288.512.32124.362.911.79
4293.262.45119.703.672.06
5291.832.38122.623.491.91
表6  倾角调节液压缸收回状态下的工作性能测试结果
试验序号伸出位移/mm伸出速度/(mm/s)

伸出同步

偏差/mm

伸出锁止

偏差/mm

收回位移/mm收回速度/(mm/s)

收回同步

偏差/mm

收回锁止

偏差/mm

平均值341.5374.251.911.02340.95123.272.121.13
1341.2274.501.881.02340.82123.042.101.11
2340.6374.051.850.95339.56123.932.071.08
3338.9474.661.840.93343.98122.412.051.04
4344.2573.872.031.13338.54124.012.241.25
5342.6274.161.961.09341.85122.972.151.16
表7  倾卸液压缸的工作性能测试结果
1 李楚芬,郑立.中药材三七的药用价值分析[J].内蒙古中医药, 2015, 34(3): 52.
LI C F, ZHENG L. Analysis of the medicinal value of Panax notoginseng in Chinese herbal medicine[J]. Inner Mongolia Journal of Traditional Chinese Medicine, 2015, 34(3): 52.
2 孟庆红,章涤凡. 云南中医药产业发展: 分析与政策[M]. 昆明: 云南人民出版社, 2021: 221.
MENG Q H, ZHANG D F. Development of traditional Chinese medicine industry in Yunnan: analysis and policy [M]. Kunming: Yunnan People's Publishing House, 2021: 221.
3 王莹,禇扬,李伟,等.三七中皂苷成分及其药理作用的研究进展[J]. 中草药, 2015, 46(9): 1381-1392.
WANG Y, CHU Y, LI W, et al. Advances in study on saponins in Panax notoginseng and their pharmacological activities[J]. Chinese Traditional and Herbal Drugs, 2015, 46(9): 1381-1392.
4 解开婷, 张兆国, 王法安, 等. 土壤与三七根茎黏附数学模型构建与验证[J]. 农业工程学报, 2022, 38(): 131-141.
XIE K T, ZHANG Z G, WANG F A, et al. Mathematical model construction and verification of soil and Panax notoginseng root adhesion[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(): 131-141.
5 于尚洋. 三七收获机械研究现状及发展趋势[J]. 湖北农机化, 2019(5): 4.
YU S Y. Research status and development trend of Panax notoginseng harvesting machinery[J]. Hubei Agricultural Mechanization, 2019(5): 4.
6 杜小强, 宁晨, 杨振华, 等. 跨式油茶果收获机履带底盘行走液压系统设计与试验[J]. 农业机械学报, 2023, 54(3): 139-147.
DU X Q, NING C, YANG Z H, et al. Design and experiment of hydraulic system for crawler chassis of straddle type camellia oleifera fruit harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(3): 139-147.
7 朱晨辉. 履带式烟叶采收机液压行驶系统设计及控制方法研究[D]. 郑州: 河南农业大学, 2020.
ZHU C H. Research on design and control method of hydraulic driving system of crawler tobacco harvester[D]. Zhengzhou: Henan Agricultural University, 2020.
8 SONG X W, CAO S K, LI S Z, et al. Hydraulic leveling control system of harvester chassis[C]//Proceedings of the 2017 3rd International Forum on Energy, Environment Science and Materials. Shenzhen, Nov. 25-26, 2018.
9 张兆国, 王一驰, 李汉青, 等. 液压控制履带自走式温室三七收获机设计与试验[J]. 农业机械学报, 2021, 52(6): 127-135, 158.
ZHANG Z G, WANG Y C, LI H Q, et al. Design and test of hydraulic control tracked self-propelled greenhouse Panax notoginseng harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(6): 127-135, 158.
10 张建龙. 山地履带自走式辣椒收获机液压系统设计与研究[D]. 贵阳: 贵州师范大学, 2023.
ZHANG J L. Design and research of hydraulic system of self-propelled pepper harvester with mountain tracks[D]. Guiyang: Guizhou Normal University, 2023.
11 王恒. 谷物联合收获机液压系统设计与仿真优化[D]. 济南: 济南大学, 2020.
WANG H. Design and simulation optimization of hydraulic system of grain combine harvester[D]. Jinan: University of Jinan, 2020.
12 WANG H, SHEN H, CAO S K, et al. Hydraulic system design of combined harvester header and simulation of header lifting system[J]. IOP Conference Series: Earth and Environmental Science, 2019, 233: 032012.
13 LI Z X, XING K L. Application of fuzzy PID controller for electro-hydraulic servo position control system[C]// 2017 3rd IEEE International Conference on Control Science and Systems Engineering. Beijing, Aug. 17-19, 2017.
14 ZHOU T, ZHANG X K. Rapid hybrid modeling and nonlinear robust control for hydraulic system[C]//2019 Chinese Control and Decision Conference. Nanchang, Jun. 3-5, 2019.
15 王云峰. 煤炭运输机液压及电控系统设计与研究[D]. 沈阳: 沈阳工业大学, 2018.
WANG Y F. Design and research on hydraulic and electric control system for coal conveyor[D]. Shenyang: Shenyang University of Technology, 2018.
16 PASZOTA Z. Theoretical and mathematical models of the torque of mechanical losses in a hydraulic rotational motor for hydrostatic drive[J]. Polish Maritime Research, 2010, 17(3): 18-25.
17 潘丰, 刘祺慧, 吴维. 纯液压驱动滑移转向车辆直驶转向协调控制[J/OL]. 计算机集成制造系统, 2024: 1-15(2024-02-20) [2024-04-01]. .
PANG F, LIU Q H, WU W. Influence of excitation amplitude and load on the characteristics of aquasi-zero stiffness isolator[J/OL]. Computer Integrated Manufacturing Systems, 2024: 1-15 (2024-02-20) [2024-04-01]. .
18 杨传龙. 自走式多功能果园作业平台的设计与试验[D]. 泰安: 山东农业大学, 2018.
YANG C L. Design and experiment of self-propelled multi-function orchard platform[D]. Taian: Shandong Agricultural University, 2018.
19 云南省农业标准化技术委员会. 三七机械化收获技术规程: [S]. 昆明: 2020.
Yunnan Provincial Agricultural Standardization Technical Committee. Technical regulations forPanax notoginsengmechanized harvest: [S]. Kunming: 2020.
20 王华. 油菜联合收获机串并联组合式液压驱动系统设计与试验[D]. 武汉: 华中农业大学, 2017.
WANG H. Design and experiment of series-parallel combined hydraulic drive system for rape combine harvester[D]. Wuhan: Huazhong Agricultural University, 2017.
[1] 许顺海,周小磊,龚国芳,洪昊岑,张鹏,刘尚,范亚磊. 基于剩余寿命的柱塞泵可再制造性评估[J]. 工程设计学报, 2024, 31(5): 557-564.
[2] 杨培,张明路,孙凌宇. 爬壁机器人磁吸附模块设计分析与结构参数优化[J]. 工程设计学报, 2024, 31(5): 592-602.
[3] 张伟涛,赵栋杰,王禄,包新棉,黄保赛. 一种柔性采摘机械臂的运动学分析与仿真[J]. 工程设计学报, 2024, 31(2): 230-237.
[4] 李新革,廖红玉,周敏,陈萌萌,谢良喜. 抹灰机摆动喷涂机构创新设计与分析[J]. 工程设计学报, 2024, 31(2): 248-253.
[5] 智文静,李国材,郑维娟,张晨,刘冬平,才潇逸. 基于人机工程学的民用飞机舱门操作面板设计[J]. 工程设计学报, 2024, 31(1): 107-119.
[6] 田立勇,唐瑞,于宁,陈洪月. 带式输送机更换托辊用皮带举升机构设计与应用[J]. 工程设计学报, 2023, 30(6): 667-677.
[7] 张栋,杨培,黄哲轩,孙凌宇,张明路. 爬壁机器人悬摆式磁吸附机构的设计与优化[J]. 工程设计学报, 2023, 30(3): 334-341.
[8] 唐绍禹,吴杰,张辉,邓兵兵,黄禹铭,黄浩. 多极式磁流变离合器温度场仿真与实验研究[J]. 工程设计学报, 2022, 29(4): 484-492.
[9] 樊霄岳, 刘启, 官威, 朱云, 陈苏琳, 沈彬. 电磁微锻机构热效应模拟与实验研究[J]. 工程设计学报, 2022, 29(1): 66-73.
[10] 张勤, 庞业忠, 王凯. 机器人踩踏式除草过程仿真分析与试验研究[J]. 工程设计学报, 2021, 28(6): 709-719.
[11] 张沈瞳. 基于虚拟样机技术的飞机起落架着陆载荷分析[J]. 工程设计学报, 2021, 28(6): 758-763.
[12] 陈振, 熊涛, 杨延青, 薛晓伟. 可溶球座密封环密封性能分析与结构优化[J]. 工程设计学报, 2021, 28(6): 720-728.
[13] 于如飞, 寇鑫, 陈渭. 基于CFD的新型表面织构仿真分析[J]. 工程设计学报, 2021, 28(4): 466-472.
[14] 王志力, 朱廷忠, 陈智勇, 席波, 贾小平. 贯流式水轮机调速器的机械结构和液压系统设计[J]. 工程设计学报, 2020, 27(6): 753-764.
[15] 王玉璞, 程文明, 杜润, 王书标, 杨行舟, 翟守才. 大型门式起重机风荷载响应仿真分析[J]. 工程设计学报, 2020, 27(2): 239-246.