Please wait a minute...
工程设计学报  2024, Vol. 31 Issue (3): 301-308    DOI: 10.3785/j.issn.1006-754X.2024.03.222
机械设计理论与方法     
纤维增强复合材料多模式内聚断裂的相场模型
粟海波1(),陈波潓1,吴熙2,3,王亮1()
1.上海交通大学 船舶海洋与建筑工程学院,上海 200240
2.浙大城市学院 工程学院,浙江 杭州 310015
3.城市基础设施智能化浙江省工程研究中心,浙江 杭州 310015
Phase-field model for multi-pattern cohesive fracture in fiber reinforced composite material
Haibo SU1(),Bohui CHEN1,Xi WU2,3,Liang WANG1()
1.School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiaotong University, Shanghai 200240, China
2.School of Engineering, Hangzhou City University, Hangzhou 310015, China
3.Zhejiang Engineering Research Center of Intelligent Urban Infrastructure, Hangzhou 310015, China
 全文: PDF(1761 KB)   HTML
摘要:

经典的断裂相场法是基于脆性断裂理论建立的变分方法,因此其无法准确描述复合材料的准脆性断裂行为。基于此,提出了一种多相场模型来描述纤维增强复合材料的多模式内聚断裂行为。通过对各向异性相场驱动力和损伤本构关系的合理定义,提出了一种混合型内聚断裂相场模型,并通过推导得到了相应的演化方程与强度准则。采用该模型进行了3种复合材料板的裂纹扩展及失效仿真,结果表明,所提出的多相场模型能够有效模拟复合材料的多模式内聚断裂行为,具有较高的应用价值。

关键词: 复合材料相场模拟内聚断裂失效机理    
Abstract:

The classical fracture phase-field model is a variational method based on brittle fracture theory, which cannot accurately characterize the quasi-brittle fracture behavior of composite material. Based on this, a multi-phase-field model was proposed to describe the multi-pattern cohesive fracture behavior of fiber reinforced composites material. A hybrid cohesive fracture phase-field model was proposed by reasonably defining the phase-field driving force and the damage constitutive relationship for the anisotropic material, and the corresponding evolution equation and strength criterion were derived. The model was used to simulate the crack propagation and failure of three kinds of composite plates. The results showed that the proposed multi-phase-field model could effectively simulate the multi-pattern cohesive fracture behavior of composite material, and had high application value.

Key words: composite materials    phase-field modeling    cohesive fracture    failure mechanism
收稿日期: 2023-12-13 出版日期: 2024-06-27
CLC:  TB 332  
基金资助: 国家自然科学基金资助项目(12102256);城市基础设施智能化浙江省工程研究中心开放基金资助项目(IUI2023-YB-07)
通讯作者: 王亮     E-mail: Harbour@sjtu.edu.cn;wang_liang@sjtu.edu.cn
作者简介: 粟海波(1999—),男,四川成都人,硕士生,从事复合材料相场模拟研究,E-mail: Harbour@sjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
粟海波
陈波潓
吴熙
王亮

引用本文:

粟海波,陈波潓,吴熙,王亮. 纤维增强复合材料多模式内聚断裂的相场模型[J]. 工程设计学报, 2024, 31(3): 301-308.

Haibo SU,Bohui CHEN,Xi WU,Liang WANG. Phase-field model for multi-pattern cohesive fracture in fiber reinforced composite material[J]. Chinese Journal of Engineering Design, 2024, 31(3): 301-308.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.03.222        https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I3/301

图1  固体域内纤维和基体裂纹示意
图2  单边缝复合材料开口板几何尺寸及开口位置示意
参数类型参数数值
弹性参数E1 /GPa114.8
E2 /GPa11.7
G12 /GPa9.66
v120.21
断裂参数XT /MPa1 500
YT /MPa8.5
SL /MPa120
GL /(N/mm)106.3
GT /(N/mm)0.277 4
GSL /(N/mm)0.787 9
表1  复合材料HTA/6376的特性参数
图3  单边缝复合材料开口板裂纹
图4  单边裂缝复合材料开口板位移—载荷试验曲线
图5  含缺口变角度单层复合板的几何尺寸及边界条件示意
参数类型参数数值
弹性参数E1 /GPa171
E2 /GPa9.08
G12 /GPa5.29
v120.32
断裂参数XT /MPa2 325
YT /MPa62.3
SL /MPa89.6
GL /(N/mm)97.8
GT /(N/mm)0.277
GSL /(N/mm)0.788
表2  复合板材料IM7/8552的特性参数
图6  [0°/-22.5°/0°/22.5°]铺层复合板的裂纹扩展过程
图7  [0°/0°/-22.5°/22.5°]和[0°/0°/-30°/-30°] 铺层复合板失效模式
图8  开孔复合材料层合板的几何尺寸及边界条件示意
参数类型参数数值
弹性参数E1 /GPa161
E2 /GPa11.4
G12 /GPa5.17
v120.32
断裂参数XT /MPa2 806
YT /MPa60
SL /MPa90
GL /(N/mm)112.7
GT /(N/mm)0.277
GSL /(N/mm)0.63
表3  层合板材料IM7/855的特性常数
图9  [0°/90°] 开孔复合材料层合板的失效模式
图10  [0°/-45°] 和 [90°/45°]开孔复合材料层合板的多重失效模式
1 白翠平,马其华,周天俊. 车用CFRP油底壳的结构与制造工艺并行优化设计[J].工程设计学报,2020,27(5):608-615. doi:10.3785/j.issn.1006-754X.2020.00.075
BAI C P, MA Q H, ZHOU T J. Concurred optimal design of structure and manufacturing process of CFRP oil pan for vehicles[J]. Chinese Journal of Engineering Design, 2020, 27(5): 608-615.
doi: 10.3785/j.issn.1006-754X.2020.00.075
2 郝春永,王栋亮,郑津洋,等. 铝内胆复合材料储氢瓶爆破压力与疲劳寿命关系研究[J].工程设计学报,2021,28(5):594-601. doi:10.3785/j.issn.1006-754X.2021.00.072
HAO C Y, WANG D L, ZHENG J Y, et al. Research on the relationship between burst pressure and fatigue life of composite hydrogen storage tank with aluminum liner[J]. Chinese Journal of Engineering Design, 2021, 28(5): 594-601.
doi: 10.3785/j.issn.1006-754X.2021.00.072
3 李佳,宋梅利,冯君,等. 面向激光增材制造的仿生薄壁结构抗冲击研究[J].工程设计学报,2024,31(1):67-73. doi:10.3785/j.issn.1006-754X.20224.03.317
LI J, SONG M L, FENG J, et al. Study on impact resistance of bio-inspired thin-walled structure for laser additive manufacturing[J]. Chinese Journal of Engineering Design, 2024, 31(1): 67-73.
doi: 10.3785/j.issn.1006-754X.20224.03.317
4 郑传祥,王亮,魏双,等. 基于微观力学的复合材料气瓶爆破强度研究[J].工程设计学报,2016,23(5):461-467. doi:10.3785/j.issn.1006-754X.2016.05.009
ZHENG C X, WANG L, WEI S, et al. Micromechanics-based burst failure analysis of composite vessel used for hydrogen storages[J]. Chinese Journal of Engineering Design, 2016, 23(5): 461-467.
doi: 10.3785/j.issn.1006-754X.2016.05.009
5 冯鹏.复合材料在土木工程中的发展与应用[J].玻璃钢/复合材料,2014(9):99-104. doi:10.3969/j.issn.1003-0999.2014.09.013
FENG P. Development and application of composite in civil engineering[J]. Fiber Reinforced Plastics/Composites, 2014 (9): 99-104.
doi: 10.3969/j.issn.1003-0999.2014.09.013
6 NGO D, SCORDELIS A C. Finite element analysis of reinforced concrete beams[J]. ACI Journal Proceedings, 1967, 64(3): 152-163.
7 RASHID Y R. Ultimate strength analysis of prestressed concrete pressure vessels[J]. Nuclear Engineering and Design, 1968, 7(4): 334-344.
8 FRANCFORT G A, MARIGO J J. Revisiting brittle fracture as an energy minimization problem[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(8): 1319-1342.
9 彭帆,马玉娥,黄玮,等.基于相场法的复合材料失效分析研究进展[J].复合材料学报,2023,40(5):2495-2506.
PENG F, MA Y E, HUANG W, et al. Failure analysis of composite materials based on phase field method: A review[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2495-2506.
10 CLAYTON J D, KNAP J. Phase field modeling of directional fracture in anisotropic polycrystals[J]. Computational Materials Science, 2015, 98: 158-169.
11 ZHANG P, HU X F, BUI T Q, et al. Phase field modeling of fracture in fiber reinforced composite laminate[J]. International Journal of Mechanical Sciences, 2019, 161-162: 105008. doi:10.1016/j.ijmecsci.2019. 07.007 .
doi: 10.1016/j.ijmecsci.2019. 07.007
12 张鹏.纤维增强复合材料破坏过程模拟的相场模型研究[D].大连:大连理工大学,2020.
ZHANG P. Phase field modeling of fracture in fiber reinforced composite laminate[D]. Dalian: Dalian University of Technology, 2020.
13 SUPRIATNA D, YIN B, KONOPKA D. An anisotropic phase-field approach accounting for mixed fracture modes in wood structures within the representative crack element framework[J]. Engineering Fracture Mechanics, 2022, 269: 108514.
14 TEICHTMEISTER S, KIENLE D, ALDAKHEEL F, et al. Phase field modeling of fracture in anisotropic brittle solids[J]. International Journal of Non-Linear Mechanics, 2017, 97: 1-21.
15 BLEYER J, ALESSI R. Phase-field modeling of anisotropic brittle fracture including several damage mechanisms[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 336: 213-236.
16 DEAN A, KUMAR P K A V, REINOSO J, et al. A multiphase-field fracture model for long fiber reinforced composites based on the Puck theory of failure[J]. Composite Structures, 2020, 251: 112446.
17 AMOR H, MARIGO J J, MAURINI C. Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments[J]. Journal of the Mechanics and Physics of Solids, 2009, 57(8): 1209-1229.
18 NGUYEN T T, YVONNET J, BORNERT M, et al. On the choice of parameters in the phase field method for simulating crack initiation with experimental validation[J]. International Journal of Fracture, 2016, 197(2): 213-226.
19 WU J Y. A unified phase-field theory for the mechanics of damage and quasi-brittle failure[J]. Journal of the Mechanics and Physics of Solids, 2017, 103: 72-99.
20 WU J Y, NGUYEN V P. A length scale insensitive phase-field damage model for brittle fracture[J]. Journal of the Mechanics and Physics of Solids, 2018, 119: 20-42.
21 QUINTANAS-COROMINAS A, REINOSO J, CASONI E, et al. A phase field approach to simulate intralaminar and translaminar fracture in long fiber composite materials[J]. Composite Structures, 2019, 220: 899-911.
22 AMBATI M, GERASIMOV T, DE LORENZIS L. A review on phase-field models of brittle fracture and a new fast hybrid formulation[J]. Computational Mechanics, 2015, 55(2): 383-405.
23 CAHILL L M A, NATARAJAN S, BORDAS S P A, et al. An experimental/numerical investigation into the main driving force for crack propagation in uni-directional fibre-reinforced composite laminae[J]. Composite Structures, 2014, 107: 119-130.
[1] 张正峰,宋小雨,袁晓磊,陈文娟,张伟东. Al/CFRP混合薄壁结构耐撞性能可靠性优化设计[J]. 工程设计学报, 2022, 29(6): 720-730.
[2] 白翠平, 马其华, 周天俊. 车用CFRP油底壳的结构与制造工艺并行优化设计[J]. 工程设计学报, 2020, 27(5): 608-615.
[3] 杨绍勇, 雷飞, 陈园. 基于铺层设计特征的碳纤维增强复合材料悬架控制臂结构优化[J]. 工程设计学报, 2016, 23(6): 600-605,619.
[4] 郑传祥, 王亮, 魏双, 王柏村. 基于微观力学的复合材料气瓶爆破强度研究[J]. 工程设计学报, 2016, 23(5): 461-467.
[5] 徐振钦, 韩 冰. 基于瞬态动力学的复合材料密封盖可靠性分析[J]. 工程设计学报, 2009, 16(5): 354-357.
[6] 陈文华, 方晶敏, 马子魁, 钱 萍, 武海军. 潜水电泵失效检测技术与方法[J]. 工程设计学报, 2007, 14(6): 443-448.
[7] 乔华伟, 杨克己.  基于小波变换的反卷积技术[J]. 工程设计学报, 2007, 14(5): 369-373.
[8] 安鲁陵, 许斌. 复合材料纤维铺放自动编程技术研究[J]. 工程设计学报, 2005, 12(2): 80-84.