机械设计理论与方法 |
|
|
|
|
纤维增强复合材料多模式内聚断裂的相场模型 |
粟海波1( ),陈波潓1,吴熙2,3,王亮1( ) |
1.上海交通大学 船舶海洋与建筑工程学院,上海 200240 2.浙大城市学院 工程学院,浙江 杭州 310015 3.城市基础设施智能化浙江省工程研究中心,浙江 杭州 310015 |
|
Phase-field model for multi-pattern cohesive fracture in fiber reinforced composite material |
Haibo SU1( ),Bohui CHEN1,Xi WU2,3,Liang WANG1( ) |
1.School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiaotong University, Shanghai 200240, China 2.School of Engineering, Hangzhou City University, Hangzhou 310015, China 3.Zhejiang Engineering Research Center of Intelligent Urban Infrastructure, Hangzhou 310015, China |
引用本文:
粟海波,陈波潓,吴熙,王亮. 纤维增强复合材料多模式内聚断裂的相场模型[J]. 工程设计学报, 2024, 31(3): 301-308.
Haibo SU,Bohui CHEN,Xi WU,Liang WANG. Phase-field model for multi-pattern cohesive fracture in fiber reinforced composite material[J]. Chinese Journal of Engineering Design, 2024, 31(3): 301-308.
链接本文:
https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.03.222
或
https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I3/301
|
1 |
白翠平,马其华,周天俊. 车用CFRP油底壳的结构与制造工艺并行优化设计[J].工程设计学报,2020,27(5):608-615. doi:10.3785/j.issn.1006-754X.2020.00.075 BAI C P, MA Q H, ZHOU T J. Concurred optimal design of structure and manufacturing process of CFRP oil pan for vehicles[J]. Chinese Journal of Engineering Design, 2020, 27(5): 608-615.
doi: 10.3785/j.issn.1006-754X.2020.00.075
|
2 |
郝春永,王栋亮,郑津洋,等. 铝内胆复合材料储氢瓶爆破压力与疲劳寿命关系研究[J].工程设计学报,2021,28(5):594-601. doi:10.3785/j.issn.1006-754X.2021.00.072 HAO C Y, WANG D L, ZHENG J Y, et al. Research on the relationship between burst pressure and fatigue life of composite hydrogen storage tank with aluminum liner[J]. Chinese Journal of Engineering Design, 2021, 28(5): 594-601.
doi: 10.3785/j.issn.1006-754X.2021.00.072
|
3 |
李佳,宋梅利,冯君,等. 面向激光增材制造的仿生薄壁结构抗冲击研究[J].工程设计学报,2024,31(1):67-73. doi:10.3785/j.issn.1006-754X.20224.03.317 LI J, SONG M L, FENG J, et al. Study on impact resistance of bio-inspired thin-walled structure for laser additive manufacturing[J]. Chinese Journal of Engineering Design, 2024, 31(1): 67-73.
doi: 10.3785/j.issn.1006-754X.20224.03.317
|
4 |
郑传祥,王亮,魏双,等. 基于微观力学的复合材料气瓶爆破强度研究[J].工程设计学报,2016,23(5):461-467. doi:10.3785/j.issn.1006-754X.2016.05.009 ZHENG C X, WANG L, WEI S, et al. Micromechanics-based burst failure analysis of composite vessel used for hydrogen storages[J]. Chinese Journal of Engineering Design, 2016, 23(5): 461-467.
doi: 10.3785/j.issn.1006-754X.2016.05.009
|
5 |
冯鹏.复合材料在土木工程中的发展与应用[J].玻璃钢/复合材料,2014(9):99-104. doi:10.3969/j.issn.1003-0999.2014.09.013 FENG P. Development and application of composite in civil engineering[J]. Fiber Reinforced Plastics/Composites, 2014 (9): 99-104.
doi: 10.3969/j.issn.1003-0999.2014.09.013
|
6 |
NGO D, SCORDELIS A C. Finite element analysis of reinforced concrete beams[J]. ACI Journal Proceedings, 1967, 64(3): 152-163.
|
7 |
RASHID Y R. Ultimate strength analysis of prestressed concrete pressure vessels[J]. Nuclear Engineering and Design, 1968, 7(4): 334-344.
|
8 |
FRANCFORT G A, MARIGO J J. Revisiting brittle fracture as an energy minimization problem[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(8): 1319-1342.
|
9 |
彭帆,马玉娥,黄玮,等.基于相场法的复合材料失效分析研究进展[J].复合材料学报,2023,40(5):2495-2506. PENG F, MA Y E, HUANG W, et al. Failure analysis of composite materials based on phase field method: A review[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2495-2506.
|
10 |
CLAYTON J D, KNAP J. Phase field modeling of directional fracture in anisotropic polycrystals[J]. Computational Materials Science, 2015, 98: 158-169.
|
11 |
ZHANG P, HU X F, BUI T Q, et al. Phase field modeling of fracture in fiber reinforced composite laminate[J]. International Journal of Mechanical Sciences, 2019, 161-162: 105008. doi:10.1016/j.ijmecsci.2019. 07.007 .
doi: 10.1016/j.ijmecsci.2019. 07.007
|
12 |
张鹏.纤维增强复合材料破坏过程模拟的相场模型研究[D].大连:大连理工大学,2020. ZHANG P. Phase field modeling of fracture in fiber reinforced composite laminate[D]. Dalian: Dalian University of Technology, 2020.
|
13 |
SUPRIATNA D, YIN B, KONOPKA D. An anisotropic phase-field approach accounting for mixed fracture modes in wood structures within the representative crack element framework[J]. Engineering Fracture Mechanics, 2022, 269: 108514.
|
14 |
TEICHTMEISTER S, KIENLE D, ALDAKHEEL F, et al. Phase field modeling of fracture in anisotropic brittle solids[J]. International Journal of Non-Linear Mechanics, 2017, 97: 1-21.
|
15 |
BLEYER J, ALESSI R. Phase-field modeling of anisotropic brittle fracture including several damage mechanisms[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 336: 213-236.
|
16 |
DEAN A, KUMAR P K A V, REINOSO J, et al. A multiphase-field fracture model for long fiber reinforced composites based on the Puck theory of failure[J]. Composite Structures, 2020, 251: 112446.
|
17 |
AMOR H, MARIGO J J, MAURINI C. Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments[J]. Journal of the Mechanics and Physics of Solids, 2009, 57(8): 1209-1229.
|
18 |
NGUYEN T T, YVONNET J, BORNERT M, et al. On the choice of parameters in the phase field method for simulating crack initiation with experimental validation[J]. International Journal of Fracture, 2016, 197(2): 213-226.
|
19 |
WU J Y. A unified phase-field theory for the mechanics of damage and quasi-brittle failure[J]. Journal of the Mechanics and Physics of Solids, 2017, 103: 72-99.
|
20 |
WU J Y, NGUYEN V P. A length scale insensitive phase-field damage model for brittle fracture[J]. Journal of the Mechanics and Physics of Solids, 2018, 119: 20-42.
|
21 |
QUINTANAS-COROMINAS A, REINOSO J, CASONI E, et al. A phase field approach to simulate intralaminar and translaminar fracture in long fiber composite materials[J]. Composite Structures, 2019, 220: 899-911.
|
22 |
AMBATI M, GERASIMOV T, DE LORENZIS L. A review on phase-field models of brittle fracture and a new fast hybrid formulation[J]. Computational Mechanics, 2015, 55(2): 383-405.
|
23 |
CAHILL L M A, NATARAJAN S, BORDAS S P A, et al. An experimental/numerical investigation into the main driving force for crack propagation in uni-directional fibre-reinforced composite laminae[J]. Composite Structures, 2014, 107: 119-130.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|