机械设计理论与方法 |
|
|
|
|
基于深度学习的翼型参数化建模方法 |
沈剑雄1( ),刘迎圆1( ),王乐勤2 |
1.上海师范大学 信息与机电工程学院,上海 201400 2.浙江大学 能源工程学院,浙江 杭州 310027 |
|
Deep learning-based method for parametrized modeling of airfoil |
Jianxiong SHEN1( ),Yingyuan LIU1( ),Leqin WANG2 |
1.College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 201400, China 2.College of Energy Engineering, Zhejiang University, Hangzhou 310027, China |
1 |
高永,朱飞翔,李冰,等.改进CST方法在翼型优化设计中的应用[J].海军航空大学学报,2017,32(5):426-430. doi:10.7682/j.issn.1673-1522.2017.05.002 GAO Y, ZHU F X, LI B, et al. Application of improved CST parametric method in airfoil design[J]. Journal of Naval Aviation University, 2017, 32(5): 426-430.
doi: 10.7682/j.issn.1673-1522.2017.05.002
|
2 |
SALUNKE N P, JUNED A R A, CHANNIWALA S A. Airfoil parameterization techniques: a review[J]. American Journal of Mechanical Engineering, 2014, 2(4): 99-102.
|
3 |
VISWANATH A, FORRESTER A I J, KEANE A J. Constrained design optimization using generative topographic mapping[J]. AIAA Journal, 2014, 52(5): 1010-1023.
|
4 |
QIU Y, BAI J, LIU N, et al. Global aerodynamic design optimization based on data dimensionality reduction[J]. Chinese Journal of Aeronautics, 2018, 31(4): 643-659.
|
5 |
GREY Z J, CONSTANTINE P G. Active subspaces of airfoil shape parameterizations[J]. AIAA Journal, 2018, 56(5): 2003-2017.
|
6 |
CHEN W, RAMAMURTHY A. Deep generative model for efficient 3D airfoil parameterization and generation[C]// AIAA Scitech 2021 Forum. Nashville, Jan. 11-15 & 19-21, 2021.
|
7 |
吴则良,叶建川,王江,等.基于深度自动编码器神经网络的飞行器翼型参数降维与优化设计[J].兵工学报,2022,43(6):1326-1336. WU Z L, YE J C, WANG J, et al. Parameter dimensionality reduction and optimal design of aircraft airfoil based on deep autoencoder neural network[J]. Acta Armamentarii, 2022, 43(6): 1326-1336.
|
8 |
王建军,高正红.HicksHenne翼型参数化方法分析及改进[J].航空计算技术,2010,40(4):46-49. doi:10.3969/j.issn.1671-654X.2010.04.013 WANG J J, GAO Z H. Analysis and improvement of HicksHenne airfoil parameterization method[J]. Aeronautical Computing Technique, 2010, 40(4): 46-49.
doi: 10.3969/j.issn.1671-654X.2010.04.013
|
9 |
戴雅雪,应培,王波,等.带下表面射流的超临界翼型优化[J/OL].工程力学:1-9(2023-02-27)[2024-03-16]. . DAI Y X, YING P, WANG B, et al. Optimization of supercritical airfoil with jet on the lower surface of trailing edge[J/OL]. Engineering Mechanics: 1-9 (2023-02-27) [2024-03-16]. .
|
10 |
ZHANG Z K, DE GASPARI A, RICCI S, et al. Gradient-based aerodynamic optimization of an airfoil with morphing leading and trailing edges[J]. Applied Sciences, 2021, 11(4): 1929.
|
11 |
余彬,贺翔,邓浩.基于CST法的新能源无人机翼型优化设计[J].航空科学技术,2019,30(10):24-29. YU B, HE X, DENG H. Optimization design of airfoil on new energy UAV based on CST method[J]. Aeronautical Science & Technology, 2019, 30(10): 24-29.
|
12 |
WU X J, ZHANG W W, PENG X H, et al. Benchmark aerodynamic shape optimization with the POD-based CST airfoil parametric method[J]. Aerospace Science and Technology, 2019, 84: 632-640.
|
13 |
SEKAR V, JIANG Q, SHU C, et al. Fast flow field prediction over airfoils using deep learning approach[J]. Physics of Fluids, 2019, 31(5): 057103.
|
14 |
BEN F H, BOUGUEZZI S, SOUANI C. Face recognition in unconstrained environment with CNN[J]. The Visual Computer, 2021, 37: 217-226.
|
15 |
NARANJO T J, MORA M, HERNÁNDEZ G R, et al. A review of convolutional neural network applied to fruit image processing[J]. Applied Sciences, 2020, 10(10): 3443.
|
16 |
CHEN Y P, DAI X Y, LIU M C, et al. Dynamic ReLU[C]//16th European Conference on Computer Vision (ECCV 2020. Glasgow, Aug. 23-28, 2020.
|
17 |
LILLICRAP T P, SANTORO A, MARRIS L, et al. Backpropagation and the brain[J]. Nature Reviews Neuroscience, 2020, 21(6): 335-346.
|
18 |
KINGMA D P, BA J L. Adam: a method for stochastic optimization[C]//3rd International Conference on Learning Representations. San Diego, CA, May 7-9, 2015.
|
19 |
WANG B, LIU Z, LI H, et al. On the numerical simulations of vortical cavitating flows around various hydrofoils[J]. Journal of Hydrodynamics, 2017, 29(6): 926-938.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|