Please wait a minute...
工程设计学报  2016, Vol. 23 Issue (5): 461-467    DOI: 10.3785/j.issn.1006-754X.2016.05.009
建模、分析、优化和决策     
基于微观力学的复合材料气瓶爆破强度研究
郑传祥1, 王亮1,2, 魏双1, 王柏村1,2
1. 浙江大学 化工机械研究所, 浙江 杭州 310027;
2. 杭州乾知科技服务有限公司, 浙江 杭州 311112
Micromechanics-based burst failure analysis of composite vessel used for hydrogen storage
ZHENG Chuan-xiang1, WANG Liang1,2, WEI Shuang1, WANG Bai-cun1,2
1. Institute of Process Equipment, Zhejiang University, Hangzhou 310027, China;
2. M-Tech Science and Technology Service Co., Ltd., Hangzhou 311112, China
 全文: PDF(2687 KB)   HTML
摘要:

为了研究复合材料储氢气瓶在内压和温度载荷作用下的复杂失效行为,提出一种基于微观力学的气瓶渐进失效分析方法.基于微观力学失效准则,分别判断纤维和基体的损伤与失效,并采用材料刚度退化的方法模拟复合材料失效后的力学行为.此外,建立了复合材料微观力学分析模型,并提取了相应宏-微观分析参数.整个渐进失效分析过程由ABAQUS用户子程序(UMAT)实现,分析得到了复合材料气瓶在热力耦合载荷下的复杂失效模式与最终爆破强度.有限元模拟与试验结果吻合良好,说明该方法可以为复合材料储氢气瓶的设计和优化提供理论指导.

关键词: 复合材料储氢容器爆破强度微观力学    
Abstract:

The composite hydrogen storage vessel is directly subjected to both high pressure and temperature load during the hydrogen charging process, which contributes to the complicated failure mechanisms of the vessel structure. A micromechanics-based progressive failure analysis strategy was presented to study the complex failure behaviors of the composite vessel under thermo-mechanical loadings. An effective finite element model was developed based on the integration of micromechanics of failure (MMF) theory and material property degradation method (MPDM), where the MMF was used to predict the failure initiation at the constituent level and the MPDM was employed to account for the post failure behavior of the damaged materials. In addition, the micromechanics analysis of a typical unit cell model was performed in order to obtain the interaction information which bridged the micro-level and macro-level analysis. This micromechanics-based approach was implemented by a user-material subroutine (UMAT) in ABAQUS. Different failure patterns were obtained and the ultimate load-bearing ability of the vessel was predicted. The predictions of the model were also compared with experiments and reasonably good agreements were obtained. This work provides theoretical guidance for the safety and economical design as well as practical application of the composite vessel in fields of hydrogen fuel cell vehicles.

Key words: composite    hydrogen storage vessel    burst strength    micromechanics
收稿日期: 2015-12-24 出版日期: 2016-10-28
CLC:  TB33  
基金资助:

浙江省科技计划项目(2012C24020).

通讯作者: 王亮(1987-),男,辽宁铁岭人,博士,从事复合材料结构强度研究,E-mail:wangliangtcdri@126.com.http://orcid.org//0000-0002-1244-2557     E-mail: wangliangtcdri@126.com
作者简介: 郑传祥(1971-),男,浙江绍兴人,教授,博士,从事复合材料结构强度研究,E-mail:zhchx@zju.edu.cn.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郑传祥
王亮
魏双
王柏村

引用本文:

郑传祥, 王亮, 魏双, 王柏村. 基于微观力学的复合材料气瓶爆破强度研究[J]. 工程设计学报, 2016, 23(5): 461-467.

ZHENG Chuan-xiang, WANG Liang, WEI Shuang, WANG Bai-cun. Micromechanics-based burst failure analysis of composite vessel used for hydrogen storage. Chinese Journal of Engineering Design, 2016, 23(5): 461-467.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2016.05.009        https://www.zjujournals.com/gcsjxb/CN/Y2016/V23/I5/461

[1] 冯雪,沈俊,田桂,等.复合材料压力容器在航天领域的应用研究[J].火箭推进, 2014, 40(4):35-42. FENG Xue, SHEN Jun, TIAN Gui, et al. Research of composite over-wrapped pressure vessels for space application[J]. Journal of Rocket Propulsion, 2014, 40(4):35-42.
[2] 张雷枫,朱斌,郑传祥,等.轻质复合材料高压容器的研究和结构设计[J].化工装备技术,2007, 28(1):9-13. ZHANG Lei-feng, ZHU Bin, ZHENG Chuan-xiang, et al. Research and structural design of lightweight carbon fiber filament composite high pressure vessel[J]. Chemical Equipment Technology, 2007, 28(1):9-13.
[3] WANG L, ZHENG C, WEI S, et al. Thermo-mechanical investigation of composite high-pressure hydrogen storage cylinder during fast filling[J]. International Journal of Hydrogen Energy, 2015, 40(21):6853-6859.
[4] 习年生,于志成,陶春虎.纤维增强复合材料的损伤特征及失效分析方法[J].航空材料学报,2000, 20(2):55-63. XI Nian-sheng, YU Zhi-cheng, TAO Chun-hu. Damage characterization and failure analysis in fiber reinforced composites[J]. Journal of Aeronautical Materials, 2000, 20(2):55-63.
[5] WANG L, ZHENG C, LUO H, et al. Continuum damage modeling and progressive failure analysis of carbon fiber/epoxy composite pressure vessel[J]. Composite Structures, 2015, 134(15): 475-482.
[6] KURAISHI A, TSAI S W, LIU K K S. A progressive quadratic failure criterion, part B[J]. Composites Science and Technology, 2002, 62(12): 1683-1695.
[7] BASU S, WAAS A M, AMBUR D R. Prediction of progressive failure in multidirectional composite laminated panels[J]. International Journal of Solids and Structures, 2007, 44(9): 2648-2676.
[8] APALAK Z G, APALAK M K, GENC M S. Progressive damage modeling of an adhesively bonded unidirectional composite single-lap joint in tension at the mesoscale level[J]. Journal of Thermoplastic Composite Materials, 2006, 19(6): 671-702.
[9] PAL P, RAY C. Progressive failure analysis of laminated composite plates by finite element method[J]. Journal of Reinforced Plastics and Composites, 2002, 21(16): 1505-1513.
[10] TSAI S W, WU E M. A general theory of strength for anisotropic materials[J]. Journal of Composite Materials, 1971, 5(1): 58-80.
[11] HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47(2): 329-334.
[12] ORIFICI A C, HERSZBERG I, THOMSON R S. Review of methodologies for composite material modelling incorporating failure[J]. Composite Structures, 2008, 86(1): 194-210.
[13] SODEN P D, HINTON M J, KADDOUR A S. A comparison of the predictive capabilities of current failure theories for composite laminates[J]. Composites Science and Technology, 1998, 58(7): 1225-1254.
[14] 郑晓霞,郑锡涛,缑林虎.多尺度方法在复合材料力学分析中的研究进展[J].力学进展,2010, 40(1):41-56. ZHENG Xiao-xia, ZHENG Xi-tao, GOU Lin-hu. The research process on multiscale method for the mechanical analysis of composites[J]. Advances in Mechanics, 2010, 40(1): 41-56.
[15] SUN X S, TAN V B C, TAY T E. Micromechanics-based progressive failure analysis of fibre-reinforced composites with non-iterative element-failure method[J]. Computers & Structures, 2011, 89(11): 1103-1116.
[16] SPAHN J, ANDRA H, KABEL M, et al. A multiscale approach for modeling progressive damage of composite materials using fast Fourier transforms[J]. Computer Methods in Applied Mechanics and Engineering, 2014, 268: 871-883.
[17] HA S K, JIN K K, HUANG Y. Micro-mechanics of failure (MMF) for continuous fiber reinforced composites[J]. Journal of Composite Materials, 2008,42(18):1873-1895.
[18] KACHANOV L M. Rupture time under creep conditions[J]. International Journal of Fracture, 1999,97(1/4):11-8.
[19] MCCARTHY C T, O'HIGGINS R M, FRIZZELL R M. A cubic spline implementation of non-linear shear behaviour in three-dimensional progressive damage models for composite laminates[J]. Composite Structures, 2010, 92(1): 173-181.
[20] ZHENG C, LEI S. Mechanical analysis and optimal design for carbon fiber resin composite wound hydrogen storage vessel with aluminum alloy liner[J]. Journal of Pressure Vessel Technology, 2009, 131(2):021204.1-021204.6.
[21] ZHENG C, WANG L, LI R, et al. Fatigue test of carbon epoxy composite high pressure hydrogen storage vessel under hydrogen environment[J]. Journal of Zhejiang University SCIENCE A, 2013, 14(6): 393-400.

[1] 白翠平, 马其华, 周天俊. 车用CFRP油底壳的结构与制造工艺并行优化设计[J]. 工程设计学报, 2020, 27(5): 608-615.
[2] 杨绍勇, 雷飞, 陈园. 基于铺层设计特征的碳纤维增强复合材料悬架控制臂结构优化[J]. 工程设计学报, 2016, 23(6): 600-605,619.
[3] 徐振钦, 韩 冰. 基于瞬态动力学的复合材料密封盖可靠性分析[J]. 工程设计学报, 2009, 16(5): 354-357.
[4] 乔华伟, 杨克己.  基于小波变换的反卷积技术[J]. 工程设计学报, 2007, 14(5): 369-373.
[5] 安鲁陵, 许斌. 复合材料纤维铺放自动编程技术研究[J]. 工程设计学报, 2005, 12(2): 80-84.