Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (4): 419-428    DOI: 10.3785/j.issn.1006-754X.2023.00.054
机械设计理论与方法     
3D打印TPU材料的力学性能及模型参数研究
谢博伟1,2(),金莫辉1,2,杨洲1,2,3,段洁利1,2(),屈明宇1,李锦辉1
1.华南农业大学 工程学院,广东 广州 510642
2.岭南现代农业科学与技术广东省实验室,广东 广州 510642
3.广东海洋大学 机械工程学院,广东 湛江 524088
Research on mechanical properties and model parameters of 3D printed TPU material
Bowei XIE1,2(),Mohui JIN1,2,Zhou YANG1,2,3,Jieli DUAN1,2(),Mingyu QU1,Jinhui LI1
1.College of Engineering, South China Agricultural University, Guangzhou 510642, China
2.Lingnan Modern Agricultural Science and Technology Guangdong Laboratory, Guangzhou 510642, China
3.School of Mechanical Engineering, Guangdong Ocean University, Zhanjiang 524088, China
 全文: PDF(3189 KB)   HTML
摘要:

为了解决柔顺机构在优化设计过程中试验及性能验证困难的问题,采用3D打印技术对热塑性聚氨酯(thermoplastic polyurethane,TPU)材料的力学性能进行了试验研究。分析了材料硬度和打印填充率对TPU材料力学性能的影响,获得了TPU材料较佳的3D打印参数。进行单因素和两因素试验并结合方差分析,确定了显著影响TPU试样柔性的主次因素分别为TPU材料硬度和打印填充率。结合TPU材料的力学性能试验数据,得到了Mooney-Rivlin、Yeoh、Ogden、Valanis-Landel等4种常用超弹性材料本构模型的材料参数与材料硬度、打印填充率之间的映射关系。研究表明:随着TPU材料硬度和打印填充率增大,试样的柔性减弱;在4种超弹性模型中,Ogden模型对于不同打印参数下的TPU试样都具有较好的力学性能预测效果;4种模型在相同TPU硬度、不同打印填充率下的预测效果没有明显差别。研究结果可以为TPU材料的3D打印和有限元仿真分析提供参考,为柔顺机构在设计过程中的试验、性能验证及样件制作提供可靠的技术支撑。

关键词: 柔顺机构设计有限元仿真3D打印热塑性聚氨酯材料非线性分析    
Abstract:

In order to solve the problem of difficulty in testing and performance verification of compliant mechanisms in the process of optimal design, the mechanical properties of thermoplastic polyurethane (TPU) material were studied by 3D printing technology. The effects of material hardness and print fill rate on the mechanical properties of TPU material were analyzed, and the better 3D printing parameters of TPU material were obtained. Using single factor and two factor tset combined with variance analysis, the primary and secondary factors that significantly affect the flexibility of TPU specimens were identified as TPU material hardness and print fill rate. Combined with the mechanical property test data of TPU material, the mapping relationships between the material parameters and material hardness, print fill rate of four commonly used hyperelastic material constitutive models, i.e. Mooney-Rivlin, Yeoh, Ogden and Valanis-Landel, were obtained. The results showed that with the increase of TPU material hardness and print fill rate, the flexibility of the specimens decreased; among the four hyperelastic models, Ogden model has a good prediction effect on the mechanical properties of TPU specimens under different printing parameters; there was no significant difference in the predictive effect of the four models under the same TPU material hardness and different print fill rates. The research results can provide reference for 3D printing and finite element simulation analysis of TPU material, and provide reliable technical support for the test, performance verification and sample production of compliant mechanisms in the design process.

Key words: design of compliant mechanism    finite element simulation    3D printing    TPU (thermoplastic polyurethane) material    nonlinear analysis
收稿日期: 2023-02-11 出版日期: 2023-09-04
CLC:  TH 122  
基金资助: “十四五”广东省农业科技创新十大主攻方向“揭榜挂帅”项目(2022SDZG03);岭南现代农业科学与技术广东省实验室科研项目(NT2021009);广东省基础与应用基础研究基金资助项目(2020A1515011029);现代农业产业技术体系建设专项资金资助项目(CARS?31?11);广州市科技计划项目(202201010310);广东省现代农业产业技术体系创新团队建设专项资金资助项目(2023KJ109)
通讯作者: 段洁利     E-mail: xiebowei@stu.scau.edu.cn;duanjieli@scau.edu.cn
作者简介: 谢博伟(1998—),男,湖南株洲人,博士生,从事柔性机械与水果生产装备研究,E-mail: xiebowei@stu.scau.edu.cn, https://orcid.org/0000-0002-8789-104X
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
谢博伟
金莫辉
杨洲
段洁利
屈明宇
李锦辉

引用本文:

谢博伟,金莫辉,杨洲,段洁利,屈明宇,李锦辉. 3D打印TPU材料的力学性能及模型参数研究[J]. 工程设计学报, 2023, 30(4): 419-428.

Bowei XIE,Mohui JIN,Zhou YANG,Jieli DUAN,Mingyu QU,Jinhui LI. Research on mechanical properties and model parameters of 3D printed TPU material[J]. Chinese Journal of Engineering Design, 2023, 30(4): 419-428.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.054        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I4/419

图1  TPU材料3D打印现场
参数量值
材料硬度83A,87A,95A
打印填充率60%,80%,100%
喷嘴温度215,218,220 ℃
底板温度60 ℃
打印速度15 mm/s
填充速度12 mm/s
层高0.12 mm
线宽0.4 mm
表1  TPU材料的3D打印参数
图2  TPU材料力学性能试验
图3  TPU试样受力与变形的关系曲线
图4  TPU试样应力与应变关系曲线
TPU试样类型1号2号3号4号5号

杨氏

模量

压缩

模量

杨氏

模量

压缩

模量

杨氏

模量

压缩

模量

杨氏

模量

压缩

模量

杨氏

模量

压缩

模量

83A 60%4.713.304.813.774.843.314.863.425.173.79
83A 80%4.974.044.843.635.403.724.793.294.773.27
83A 100%5.984.866.024.705.804.165.974.095.894.07
87A 60%5.274.755.234.855.354.565.224.575.204.76
87A 80%6.845.106.975.616.995.486.785.616.865.86
87A 100%6.926.387.196.538.655.747.615.8410.775.83
95A 60%11.4710.3911.4210.2111.2110.0611.6410.2612.179.76
95A 80%12.1311.1313.5311.6613.1611.6713.7212.0613.4912.25
95A 100%16.7714.1616.6914.3116.9914.5815.9914.4117.6814.78
表2  TPU试样的弹性模量 (MPa)
图5  不同TPU材料硬度下试样的柔性
图6  不同打印填充率下试样的柔性
影响因素自由度离差平方和平均离差平方和Fp
TPU材料硬度20.1090.054737.6990.000**
打印填充率20.0140.00797.0970.000**
交互作用40.0030.00111.4100.000**
误差360.0037.357×10-?5
总和451.014
表3  TPU试样柔性两因素试验方差分析结果
图7  TPU试样柔性变化趋势
图8  TPU材料本构模型的拟合曲线
模型材料常数83A60%83A80%83A100%87A60%87A80%87A100%95A60%95A80%95A100%
Mooney-RivlinC1/1054.155.015.705.086.887.1711.8013.2014.30
C2/1061.300.971.401.051.331.451.852.333.93
YeohC10/1060.880.951.060.861.161.382.102.362.99
C20/103-1.72-1.85-1.51-0.94-1.39-3.40-12.80-11.60-9.67
C303.283.492.021.181.986.5871.1461.6726.11
Ogdenμ1/1053.955.595.915.626.386.923.0311.9012.90
μ1/105-1.36-1.10-1.15-2.11-1.25-5.61-12.50-10.10-10.10
μ1/1062.452.602.712.652.733.515.866.968.66
α12.923.183.193.213.253.533.733.563.54
α23.293.583.613.603.643.613.613.493.48
α31.521.261.351.311.391.951.631.571.58
Arruda-Boyceμ/1061.411.421.731.472.082.163.454.094.75
λm/1044.913.835.075.385.895.762.792.745.12
表4  TPU材料本构模型的材料参数 (Pa)
本构模型83A60%83A80%83A100%87A60%87A80%87A100%95A60%95A80%95A100%
Mooney-Rivlin8.2898.99910.929.15012.1213.1419.4122.3027.44
Yeoh10.05011.19512.9010.72214.1314.7318.8622.8431.10
Ogden9.60710.65012.8210.74614.0515.2120.7823.6631.56
Arruda-Boyce9.2749.49311.779.82113.8514.7722.4726.6831.34
表5  不同本构模型下TPU试样的最大应力值 (MPa)
图9  不同本构模型下TPU试样拉伸仿真结果与实验结果的对比
图10  柔顺机构压缩变形示意
图11  柔顺机构受力与变形的关系曲线
1 邹肖斌,苏丽丽,余华宁,等. 热塑性聚氨酯弹性体反应挤出合成技术研究进展[J].聚氨酯工业,2020,35(4):9-12. doi:10.3969/j.issn.1005-1902.2020.04.003
ZOU X B, SU L L, YU H N, et al. Research progress on reactive extrusion synthesis of thermoplastic polyurethane elastomer[J]. Polyurethane Industry, 2020, 35(4): 9-12.
doi: 10.3969/j.issn.1005-1902.2020.04.003
2 ZHANG Z, XIANG D, WU Y, et al. Effect of carbon black on the strain sensing property of 3D printed conductive polymer composites[J]. Applied Composite Materials, 2022: 29(3): 1235-1248.
3 HU Z, WEI Z, WANG K, et al. Engineering zero modes in transformable mechanical metamaterials[J]. Nature Communications, 2023, 14(1): 1266.
4 YU X, FAN Z, WANG X, et al. A lab-customized autonomous humanoid apple harvesting robot[J]. Computers & Electrical Engineering, 2021, 96: 107459.
5 SHAN X, BIRGLEN L. Modeling and analysis of soft robotic fingers using the fin ray effect[J]. The International Journal of Robotics Research, 2020, 39(14): 1686-1705.
6 XIE B, JIN M, DUAN J, et al. Design and analysis of a flexible adaptive supporting device for banana harvest[J]. Agronomy, 2022, 12(3): 593.
7 范长湘,武龙飞,钱志刚,等.基于TPU塑性材料的柔性操作末端设计[J].材料研究与应用,2022,16(1):124-129. doi:10.3969/j.issn.1673-9981.2022.01.015
FAN Z X, WU L F, QIAN Z G, et al. Design of an flexible end-effector for manipulation on pressure gauge using TPU material[J]. Materials Research and Application,2022, 16(1): 124-129.
doi: 10.3969/j.issn.1673-9981.2022.01.015
8 李三平,孙腾佳,袁龙强,等.气动软体采摘机械手设计及实验研究[J].工程设计学报,2022,29(6):684-694. doi:10.3785/j.issn.1006-754X.2022.00.085
LI S P, SUN T J, YUAN L Q, et al. Design and experimental research of pneumatic soft picking manipulator[J]. Chinese Journal of Engineering Design, 2022, 29(6): 684-694.
doi: 10.3785/j.issn.1006-754X.2022.00.085
9 PENG X, HAN L, LI L. A consistently compressible Mooney-Rivlin model for the vulcanized rubber based on the Penn's experimental data[J]. Polymer Engineering and Science, 2021, 61(9): 2287-2294.
10 KEERTHIWANSA R, JAVOŘÍK J, RUSNÁKOVÁ S, et al. Hyperelastic material characterization: How the change in mooney-rivlin parameter values effect the model curve[J]. Materials Science Forum, 2020, 6102: 265-271.
11 TOMAS I, CISILINO A P, FRONTINI P M. An implicit implementation of the Arruda-Boyce viscoplastic model[J]. Revista Internacional de Metodos Numericos Para Calculo Y Diseno en Ingenieria, 2015, 31(3): 171-181.
TOMAS I, CISILINO A P, FRONTINI P M. An implicit implementation of the Arruda-Boyce viscoplastic model[J]. International Journal of Numerical Methods for Calculation and Design in Engineering, 2015, 31(3): 171-181.
[1] 谢章伟,张兴波,徐哲,张羽,张丰云,王茜,王萍萍,孙树峰,王海涛,刘纪新,孙维丽,曹爱霞. 基于数字孪生的激光加工零件表面温度监控系统的构建[J]. 工程设计学报, 2023, 30(4): 409-418.
[2] 李毅,陈国华,夏铭,李波. 电主轴冷却系统设计与仿真优化[J]. 工程设计学报, 2023, 30(1): 39-47.
[3] 杨杰,彭壮壮,王世杰,马聪,王龙,段国林. 陶瓷浆料3D打印机挤压力模糊神经网络PID稳定控制研究[J]. 工程设计学报, 2023, 30(1): 65-72.
[4] 涂文兵,袁晓文,杨锦雯,杨本梦. 不同元件故障状态下滚动轴承的动态特性研究[J]. 工程设计学报, 2023, 30(1): 82-92.
[5] 周婧,高红飞,卢林,段国林. 变论域模糊PID控制微流挤出型3D打印机的挤压力研究[J]. 工程设计学报, 2022, 29(5): 572-578.
[6] 潘盛湖, 刘云强, 胡涵, 张小军, 冯一夫. 基于多喷头并联的3D打印机控制系统的研究[J]. 工程设计学报, 2022, 29(1): 100-106.
[7] 李阳, 聂羽飞. 钠燃烧试验厂房隔热密封门的设计与分析[J]. 工程设计学报, 2022, 29(1): 115-122.
[8] 严国平, 周俊宏, 钟飞, 李哲, 周宏娣, 彭震奥. 纸塑复合袋磁力压紧纠偏装置设计及优化[J]. 工程设计学报, 2021, 28(3): 367-373.
[9] 刘永江, 彭宣霖, 唐雄辉, 李华, 齐紫梅. 轴流散热风机共振失效分析与优化设计[J]. 工程设计学报, 2021, 28(2): 203-209.
[10] 李玄, 周双武, 路松, 丁冰晓. 基于二级杠杆机构的二自由度微定位平台设计与分析[J]. 工程设计学报, 2020, 27(4): 533-540.
[11] 曹文意, 陈继民, 袁艳萍, 刘思达. 基于混合坐标系的FDM型3D打印机研制[J]. 工程设计学报, 2019, 26(1): 110-115.
[12] 司国斌, 王春霞, 靳孝峰. FDM型3D打印机的高精度进料系统研究[J]. 工程设计学报, 2016, 23(5): 497-500,512.
[13] 张小良,林炜锋. 有限元方法在波形弹片设计中的研究与应用[J]. 工程设计学报, 2015, 22(5): 399-404.
[14] 张小良,林炜锋. 有限元方法在波形弹片设计中的研究与应用[J]. 工程设计学报, 2015, 22(4): 399-404.
[15] 夏 磊,江浩斌. 基于刚度匹配的汽车保险杠防撞梁改进设计[J]. 工程设计学报, 2015, 22(1): 84-88.