Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (6): 789-802    DOI: 10.3785/j.issn.1006-754X.2025.05.143
机器人与机构设计     
动态融合蚁群算法与遗传算法的路径规划方法研究
车健波1(),唐东林1(),何媛媛1,2,胡远遥1,卢炳盛1,张俊辉1
1.西南石油大学 机电工程学院,四川 成都 610500
2.四川省特种设备检验研究院,四川 成都 610000
Research on path planning method based on dynamic fusion of ant colony optimization and genetic algorithm
Jianbo CHE1(),Donglin TANG1(),Yuanyuan HE1,2,Yuanyao HU1,Bingsheng LU1,Junhui ZHANG1
1.School of Mechanical and Electrical Engineering, Southwest Petroleum University, Chengdu 610500, China
2.Sichuan Special Equipment Inspection Institute, Chengdu 610000, China
 全文: PDF(4727 KB)   HTML
摘要:

结合蚁群算法(ant colony optimization, ACO)与遗传算法(genetic algorithm, GA)的传统路径规划方法普遍存在路径不平滑、收敛速度慢及能耗较高等问题。为解决上述问题,提出了一种动态融合ACO与GA(dynamic fusion of ACO and GA, DACO-GA)的路径规划方法,以提升路径规划的效率与精度。该方法初期采用ACO生成初始种群,并引入GA进行优化调整;在后续阶段,通过动态切换2种算法的主导角色,实现全局与局部搜索的协调互补。算法设计中融合了自适应信息素分布、动态挥发因子及自适应交叉/变异概率调节机制,有效提升了搜索能力并缓解了局部最优问题。最后,围绕DACO-GA中的关键控制参数开展优化实验,以验证各改进机制的有效性。在多个典型场景下将DACO-GA与传统算法进行对比,以进一步评估其在复杂环境下的适应性。结果表明,所提出的算法可生成更平滑且长度更短的路径,展现出良好的全局优化能力以及较快的收敛速度。DACO-GA不仅为复杂路径规划问题提供了有效的解决方案,还可为多智能体协作、机器人导航等领域的优化提供技术参考。

关键词: 路径规划动态融合蚁群算法遗传算法    
Abstract:

The traditional path planning algorithms that combine ant colony optimization (ACO) and genetic algorithm (GA) commonly suffer from unsmooth paths, slow convergence speed and high energy consumption. To address these issues, a path planning method based on dynamic fusion of ACO and GA (DACO-GA) is proposed to improve the efficiency and accuracy of path planning. In the initial stage, ACO was used to generate the initial population, and GA was introduced for optimization and adjustment. In later stages, the leading role of the two algorithms was dynamically switched, enabling coordinated complementarity between global and local search. The algorithm integrated adaptive pheromone distribution, dynamic evaporation factors and adaptive crossover/mutation probability adjustment mechanisms, which effectively enhanced search capability and mitigate the tendency to fall into local optima. Finally, optimization experiments were conducted on the key control parameters of the DACO-GA to validate the effectiveness of each improvement mechanism. The DACO-GA was compared with traditional algorithms across multiple typical scenarios to further evaluate its adaptability in complex environments. The results showed that the proposed algorithm could generate smoother and shorter paths, demonstrating strong global optimization ability and faster convergence speed. The DACO-GA not only provides an effective solution for complex path planning problems, but also offers technical references for the optimization in areas such as multi-agent cooperation and robot navigation.

Key words: path planning    dynamic fusion    ant colony optimization    genetic algorithm
收稿日期: 2025-06-09 出版日期: 2025-12-30
CLC:  TP 242.2  
基金资助: 四川省自然科学基金资助项目(2024NSFSC2003);四川省市场监督管理总局科技项目(SCSJS2024006);南充市-西南石油大学市校科技战略合作项目(23XNSYSX0048);南充市-西南石油大学市校科技战略合作项目(23XNSYSX0061)
通讯作者: 唐东林     E-mail: 13540786343@163.com;tdl840451816@163.com
作者简介: 车健波(1996—),男,硕士生,从事机器人路径规划研究,E-mail: 13540786343@163.com,https://orcid.org/0009-0003-8155-520X
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
车健波
唐东林
何媛媛
胡远遥
卢炳盛
张俊辉

引用本文:

车健波,唐东林,何媛媛,胡远遥,卢炳盛,张俊辉. 动态融合蚁群算法与遗传算法的路径规划方法研究[J]. 工程设计学报, 2025, 32(6): 789-802.

Jianbo CHE,Donglin TANG,Yuanyuan HE,Yuanyao HU,Bingsheng LU,Junhui ZHANG. Research on path planning method based on dynamic fusion of ant colony optimization and genetic algorithm[J]. Chinese Journal of Engineering Design, 2025, 32(6): 789-802.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.05.143        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I6/789

图1  栅格地图
图2  栅格可移动方向示意
图3  自适应初始信息素分布
图4  动态挥发因子的变化曲线
图5  自适应交叉概率和变异概率的变化曲线
图6  删除算法原理
图7  使用删除算法前的路径规划结果
图8  使用删除算法后的路径规划结果
图9  DACO-GA算法流程
图10  参数优化用栅格地图
算法ACO阶段GA阶段融合阶段
TAmαβγτ0ρminρmaxTGPc,?maxPm,?maxKcKmTCH

多样性

阈值

改进幅度阈值
IACO-11050620~110.10.3
IGA-1100.80.20~10.8
IGA-2100.80.20.90~1
DACO-GA1050620.510.10.3100.80.20.90.8800~10.01
表1  DACO-GA的参数取值
图11  DACO-GA参数对路径规划性能的影响
图12  基于DACO-GA与MsAACO的最优路径对比
图13  用于改进机制对比的栅格地图
图14  基于ACO、IACO-1和IACO-2的最优路径对比
图15  ACO、IACO-1和IACO-2的迭代曲线对比
性能指标ACOIACO-1IACO-2
最优路径长度51.11346.87046.284
平均路径长度55.27550.15449.384
最优路径转弯次数22119
收敛次数584842
表2  ACO、IACO-1和IACO-2的路径规划性能对比
图16  基于GA、IGA-1和IGA-2的最优路径对比
图17  GA、IGA-1和IGA-2的迭代曲线对比
性能指标GAIGA-1IGA-2
最优路径长度53.21349.35547.113
平均路径长度56.43252.48350.801
最优路径转弯次数201922
收敛次数744238
表3  GA、IGA-1和IGA-2的路径规划性能对比
图18  基于ACO-GA、MACOGA和DACO-GA的最优路径对比
图19  ACO-GA、MACOGA和DACO-GA的迭代曲线对比
性能指标ACO-GAMACOGADACO-GA
最优路径长度45.11343.72441.834
平均路径长度49.94145.09447.895
最优路径转弯次数91110
收敛次数403230
表4  ACO-GA、MACOGA和DACO-GA的路径规划性能对比
地图编号特征设计目标
1矩形障碍物布置评估算法在规则障碍物布局下的全局搜索能力、路径规划和转弯控制能力
2固定通道障碍物布置测试算法在狭窄通道和复杂障碍物布局下的局部搜索能力和避障性能
3U形障碍物布置考察算法在U形障碍物环境中的路径规划和转弯控制能力
4阶梯形障碍物布置评估算法在阶梯形障碍物环境中的适应性和路径规划能力
表5  不同栅格地图的特征
图20  不同环境下基于各算法的最优路径对比
性能指标算法仿真地图
1234
路径长度Dijkstra32.14232.72334.04231.556
A*30.38531.55632.14230.971
PSO29.79930.38531.97128.627
DACO-GA28.64129.59430.02727.800
转弯次数Dijkstra66105
A*7966
PSO7768
DACO-GA4332
总转弯角度/(°)Dijkstra270.000270.000540.000225.000
A*315.000450.000270.000315.000
PSO315.000315.000315.000360.000
DACO-GA137.361137.064143.97326.565
平滑度Dijkstra0.1750.1750.0960.203
A*0.1530.1130.1750.154
PSO0.1530.1540.1540.137
DACO-GA0.2940.2950.2850.683
表6  不同环境下各算法的路径规划性能对比
图21  基于DACO-GA和JPSG算法的最优路径对比
障碍物类型算法最优路径长度平均路径长度

最优路径

转弯次数

最优路径转弯角度/(°)

最优路径

平滑度

收敛次数
动态障碍物JPSG45.69947.75694050.12448
DACO-GA44.75747.21483350.14641
静态障碍物JPSG46.87047.981114950.10445
DACO-GA43.35545.20883600.13837
表7  DACO-GA和JPSG算法的路径规划性能对比
  
[1] 崔衡, 马宗方, 宋琳, 等. 基于连续顶点分区的混凝土3D打印路径规划算法[J]. 工程设计学报, 2024, 31(3): 271-279.
CUI H, MA Z F, SONG L, et al. Path planning algorithm for concrete 3D printing based on continuous vertex partitioning[J]. Chinese Journal of Engineering Design, 2024, 31(3): 271-279.
[2] WONGPIROMSARN T, KALLMANN M, KOLLING A. Locally homotopic paths: ensuring consistent paths in hierarchical path planning[J]. IEEE Robotics and Automation Letters, 2024, 9(9): 7565-7572.
[3] 巩慧, 倪翠, 王朋, 等. 基于Dijkstra算法的平滑路径规划方法[J]. 北京航空航天大学学报, 2024, 50(2): 535-541.
GONG H, NI C, WANG P, et al. A smooth path planning method based on Dijkstra algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(2): 535-541.
[4] LI Y C, DONG X Z, DING Q Q, et al. Improved A-STAR algorithm for power line inspection UAV path planning[J]. Energies, 2024, 17(21): 5364.
[5] 冯垚, 周志峰, 沈亦纯, 等. 基于改进RRT算法的避障路径规划[J]. 工程设计学报, 2023, 30(6): 707-716.
FENG Y, ZHOU Z F, SHEN Y C, et al. Obstacle avoidance path planning based on improved RRT algorithm[J]. Chinese Journal of Engineering Design, 2023, 30(6): 707-716.
[6] 赵红专, 张鑫, 张蓓聆, 等. 基于改进人工势场的智能车动态安全椭圆路径规划方法[J]. 山东大学学报(工学版), 2025, 55(3): 46-57.
ZHAO H Z, ZHANG X, ZHANG B L, et al. A dynamic safe elliptical path planning method for intelligent vehicles based on improved artificial potential field[J]. Journal of Shandong University (Engineering Science), 2025, 55(3): 46-57.
[7] TANG X J, LI Y L. Research on path planning of self-driving vehicles based on improved DWA algorithm[J]. Applied Mathematics and Nonlinear Sciences, 2024, 9(1): 20231664.
[8] LIU H B, ZHANG S, YANG X D. Overview of path planning algorithms[J]. Recent Patents on Engineering, 2024, 18(7): 76-89.
[9] GU G Q, LI H T, ZHAO C S. A multi-strategy enhanced marine predator algorithm for global optimization and UAV swarm path planning[J]. IEEE Access, 2024, 12: 112095-112115.
[10] ZHOU Q, LIAN Y, WU J Y, et al. An optimized Q-Learning algorithm for mobile robot local path planning[J]. Knowledge-Based Systems, 2024, 286: 111400.
[11] WANG F, ZHAO L, BAI Y. Path planning for unmanned surface vehicles based on modified artificial fish swarm algorithm with local optimizer[J]. Mathematical Problems in Engineering, 2022, 2022(1): 1283374.
[12] 王芸. 基于模拟退火算法的末端车载无人机物流配送路径规划研究[J]. 自动化与仪器仪表, 2025(2): 247-251.
WANG Y. Research on the logistics and distribution route planning of terminal on-board UAV based on simulated annealing algorithm[J]. Automation & Instrumentation, 2025(2): 247-251.
[13] XUE J, TAN Z F, DAI N N, et al. Particle swarm optimization bat algorithm path automatically planning research for police drones in hilly cities[J]. Journal of Systems Science and Information, 2024, 12(1): 125-144.
[14] HONG J J, TSAI R G, CHEN X L, et al. U*: GA-based path planning algorithm for surface floating garbage cleaning robot[J]. Journal of Intelligent & Fuzzy Systems, 2024, 46(1): 837-850.
[15] 刘天湖, 赖嘉上, 孙伟龙, 等. 基于跳点优化蚁群算法的菠萝田间导航路径规划[J]. 农业机械学报, 2025, 56(4): 387-396.
LIU T H, LAI J S, SUN W L, et al. Navigation path planning of pineapple planting field based on jump point optimized ant colony algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2025, 56(4): 387-396.
[16] 田雅琴, 胡梦辉, 刘文涛, 等. 基于跳点搜索-遗传算法的自主移动机器人路径规划[J]. 工程设计学报, 2023, 30(6): 697-706.
TIAN Y Q, HU M H, LIU W T, et al. Path planning of autonomous mobile robot based on jump point search-genetic algorithm[J]. Chinese Journal of Engineering Design, 2023, 30(6): 697-706.
[17] WAHAB M N AB, NAZIR A, KHALIL A, et al. Improved genetic algorithm for mobile robot path planning in static environments[J]. Expert Systems with Applications, 2024, 249(Part C): 123762.
[18] CHONG Y, CHAI H Z, LI Y H, et al. Automatic recognition of geomagnetic suitability areas for path planning of autonomous underwater vehicle[J]. Marine Geodesy, 2021, 44(4): 287-305.
[19] LI B J, WU G H, HE Y M, et al. An overview and experimental study of learning-based optimization algorithms for the vehicle routing problem[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(7): 1115-1138.
[20] ZHENG X C, CAO J J, ZHANG Y L, et al. Optimized ant colony system algorithm for path planning in radiation environments[J]. Nuclear Engineering and Technology, 2025, 57(7): 103471.
[21] HUO F C, ZHU S, DONG H L, et al. A new approach to smooth path planning of Ackerman mobile robot based on improved ACO algorithm and B-spline curve[J]. Robotics and Autonomous Systems, 2024, 175: 104655.
[22] CHÂARI I, KOUBÂA A, TRIGUI S, et al. SmartPATH: an efficient hybrid ACO-GA algorithm for solving the global path planning problem of mobile robots[J]. International Journal of Advanced Robotic Systems, 2014, 11(7): 94.
[23] NIU Q Y, FU Y, DONG X W. Omnidirectional AGV path planning based on improved genetic algorithm[J]. World Electric Vehicle Journal, 2024, 15(4): 166.
[24] HENG H, RAHIMAN W. ACO-GA-based optimization to enhance global path planning for autonomous navigation in grid environments[J/OL]. IEEE Transactions on Evolutionary Computation, 2025: 1-15 (2025-02-18) [2025-04-23]. .
[1] 刘鑫,吴青锋,杨文广. 基于自适应Kriging代理模型的工程机械结构优化设计方法[J]. 工程设计学报, 2025, 32(6): 735-744.
[2] 李宸,史春景,李金泉. 复合机器人路径规划研究[J]. 工程设计学报, 2025, 32(5): 623-633.
[3] 李胤贤,蒋友宝,刘艳,高鹏翔. 考虑自支撑临界角的3D打印混凝土球壳结构拆分方法与成形实验[J]. 工程设计学报, 2025, 32(2): 151-158.
[4] 崔衡,马宗方,宋琳,刘超,韩怡萱. 基于连续顶点分区的混凝土3D打印路径规划算法[J]. 工程设计学报, 2024, 31(3): 271-279.
[5] 余晓波,陈素姣,章勇华,马彬隽. 基于遗传算法的集中式传动系统齿轮修形及模态优化研究[J]. 工程设计学报, 2024, 31(3): 340-347.
[6] 冀炳晖,茅健,钱波. 基于遗传算法-模糊PID的双喷头FDM3D打印机温度控制方法[J]. 工程设计学报, 2024, 31(2): 151-159.
[7] 田雅琴,胡梦辉,刘文涛,侯寅智. 基于跳点搜索-遗传算法的自主移动机器人路径规划[J]. 工程设计学报, 2023, 30(6): 697-706.
[8] 冯垚,周志峰,沈亦纯,王立端. 基于改进RRT算法的避障路径规划[J]. 工程设计学报, 2023, 30(6): 707-716.
[9] 赵迪,陈果,陈小利,王熊锦. 轮式搜救机器人地形自适应机构设计及越障性能分析[J]. 工程设计学报, 2023, 30(5): 579-589.
[10] 窦方健,邱清盈,管成,邵锦杰,吴海峰. 大转动惯量缠绕机加减速曲线优化设计[J]. 工程设计学报, 2023, 30(4): 503-511.
[11] 米鑫,李虹,郭彦青,高宏伟,王浩楠,宁羿帆. 基于线性回归的单柱塞泵单向阀参数优化[J]. 工程设计学报, 2022, 29(6): 705-712.
[12] 李琴,贾英崎,黄玉峰,李刚,叶闯. 一种工业机器人多目标轨迹优化算法[J]. 工程设计学报, 2022, 29(2): 187-195.
[13] 丁述勇, 张征, 丁文洁, 林勇. 多巷道式立体车库优化设计与车辆存取策略研究[J]. 工程设计学报, 2021, 28(4): 443-449.
[14] 唐东林, 龙再勇, 汤炎锦, 潘峰, 游传坤. 储罐检测爬壁机器人全遍历路径规划[J]. 工程设计学报, 2020, 27(2): 162-171.
[15] 张帅, 韩军, 涂群章, 杨小强, 杨旋. 基于GA-NLP的剪刀式折叠桥梁展桥机构多目标优化设计[J]. 工程设计学报, 2020, 27(1): 67-75.