Please wait a minute...
工程设计学报  2024, Vol. 31 Issue (3): 348-356    DOI: 10.3785/j.issn.1006-754X.2024.03.170
可靠性与保质设计     
基于振动响应分析的海底管道悬空内检测研究
马文滨1,2(),段志文1,2,3,李想1,2,张行1,2()
1.中国石油大学(北京) 机械与储运工程学院,北京 102249
2.中国石油大学(北京) 高端油气装备智能设计与制造研究中心,北京 102249
3.国家管网集团北方管道有限责任公司 秦皇岛输油气分公司,河北 秦皇岛 066001
Study on submarine pipeline suspension internal detection based on vibration response analysis
Wenbin MA1,2(),Zhiwen DUAN1,2,3,Xiang LI1,2,Hang ZHANG1,2()
1.College of Mechanical and Transportation Engineering, China University of Petroleum (Beijing), Beijing 102249, China
2.Center of Advanced Oil and Gas Equipment, China University of Petroleum (Beijing), Beijing 102249, China
3.Qinhuangdao Oil and Gas Transportation Branch, National Pipe Network Group North Pipeline Co. , Ltd. , Qinhuangdao 066001, China
 全文: PDF(4384 KB)   HTML
摘要:

铺设于海床中的海底管道常因洋流冲刷、船舶锚拽等自然或人为因素而处于悬空状态,易造成管道变形、腐蚀、损伤和开裂泄漏等问题,严重影响管线安全。针对DN200海底管道的悬空内检测,设计了一种内检测机器人并对其进行了动力学分析。同时,联合ANSYS与ADAMS软件建立了柔性管道-土耦合模型,开展了悬空管道内检测仿真分析。采用快速傅里叶变换和短时傅里叶变换方法对内检测机器人在复杂激励耦合条件下的振动响应信号进行处理,通过分析机器人的振动加速度实现了对悬空管段的有效识别。研究结果为油气管道悬空内检测提供了新思路。

关键词: 海底管道悬空内检测机器人动力学分析振动响应    
Abstract:

Submarine pipelines laid in the seabed are often suspended due to natural or man-made factors such as ocean current erosion and ship anchoring, which can easily cause pipeline deformation, corrosion, damage, cracking and leakage, seriously affecting the safety of pipelines. Aiming at the suspension internal detection for DN200 submarine pipelines, an internal detection robot was designed, and its dynamics analysis was conducted. Meanwhile, a flexible pipeline-soil coupling model was established by combining ANSYS and ADAMS software, and the internal detection simulation analysis for suspended pipelines was carried out. The fast Fourier transform and the short-time Fourier transform were used to process the vibration response signal of the internal detection robot under complex excitation coupling conditions, and the effective identification of the suspended pipeline section was realized by analyzing the vibration acceleration of the robot. The research results provide a new idea for the internal detection of oil and gas pipelines in suspension.

Key words: submarine pipeline    suspension    internal detection robot    dynamics analysis    vibration response
收稿日期: 2023-05-23 出版日期: 2024-06-27
CLC:  TE 978  
基金资助: 国家自然科学基金青年基金资助项目(51805542);国家自然科学基金面上项目(52275141);中国石油大学(北京)科研基金资助项目(2462023QNXZ012)
通讯作者: 张行     E-mail: 18883487151@163.com;zhanghang@cup.edu.cn
作者简介: 马文滨(2001—),男,重庆人,硕士生,从事悬空检测技术与装备研究,E-mail: 18883487151@163.com,https://orcid.org/0009-0007-0627-7456
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
马文滨
段志文
李想
张行

引用本文:

马文滨,段志文,李想,张行. 基于振动响应分析的海底管道悬空内检测研究[J]. 工程设计学报, 2024, 31(3): 348-356.

Wenbin MA,Zhiwen DUAN,Xiang LI,Hang ZHANG. Study on submarine pipeline suspension internal detection based on vibration response analysis[J]. Chinese Journal of Engineering Design, 2024, 31(3): 348-356.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.03.170        https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I3/348

图1  海底管道悬空内检测机器人的整体结构和工作原理
图2  海底管道悬空内检测机器人受激后的动力学分析示意
图3  刚体碰撞模型
参数数值
综合曲率半径/m6.872×10-3
综合弹性模量/(N/m21.139×1011
接触刚度系数/(N/m)398.2
阻尼系数/(N·s/m)0.4
力指数1.5
法向穿透深度/m1×10-4
静摩擦系数0.3
动摩擦系数0.1
静平移速度/(m/s)1×10-4
摩擦平移速度/(m/s)1×10-3
表1  碰撞仿真模型参数设置
图4  海底管道有限元模型
图5  柔性管道-土耦合仿真模型
图6  正常管段内机器人的振动加速度幅值
图7  正常管段和悬空管段内机器人的振动加速度幅值
图8  机器人在不同管段内的振动加速度时域特性
图9  机器人在不同管段内的振动加速度幅频特性
图10  机器人振动加速度的时频功率幅值谱
图11  机器人在不同长度悬空管段内的振动加速度幅值
图12  悬空管段长度不同时机器人振动加速度的时频功率幅值谱
图13  悬空管段长度不同时机器人振动加速度的功率幅值时域图(0~ 30 Hz频段)
图14  悬空管段长度不同时机器人振动加速度的功率幅值时域图(50~80 Hz频段)
1 高鹏.2021年中国油气管道建设新进展[J].国际石油经济,2022,30(3):12-19. doi:10.3969/j.issn.1004-7298.2022.03.002
GAO P. New progress in China's oil and gas pipeline construction in 2021[J]. International Petroleum Economics, 2022, 30(3): 12-19.
doi: 10.3969/j.issn.1004-7298.2022.03.002
2 LIU Y, HU H, ZHANG D. Probability analysis of damage to offshore pipeline by ship factors[J]. Transportation Research Record, 2013, 2326(1): 24-31.
3 徐兴雨,齐静静,陈凯,等.埕岛油田海底管道悬空特征及其影响因素[J].海洋地质前沿,2023,39(1):77-84.
XU X Y, QI J J, CHEN K, et al. Suspension characteristics and influencing factors of submarine pipelines in the Chengdao Oilfield[J]. Marine Geology Frontiers, 2023, 39(1): 77-84.
4 KÖPKE U G, HUNT H E M. Identification of support conditions of buried pipes using a vibrating pig[J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 1993, 207(1): 29-40.
5 KÖPKE U G. Transverse vibration of buried pipelines due to internal excitation at a point[J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 1993, 207(1): 41-59.
6 潘峰,唐东林,陈印,等.管道腐蚀缺陷超声信号的PSO-SVM模式识别研究[J].机械科学与技术,2020,39(5):751-757.
PAN F, TANG D L, CHEN Y, et al. Ultrasonic signal pattern recognition of pipeline corrosion defects with PSO-SVM[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(5): 751-757.
7 LIAO N S, ZHANG H, ZHANG S M, et al. A method for identifying support conditions of buried subsea gas pipelines based on forced vibration signal analysis[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2019, 233(1): 218-228.
8 LIAO N S, ZHANG H, ZHANG S M. Experiment for identifying free span of buried gas pipeline under internal excitation load[J]. International Journal of Pressure Vessels and Piping, 2019, 169: 215-222.
9 廖宁生,张行,张仕民,等.移动振动激励下的管道悬空内检测试验研究[J].石油矿场机械,2018,47(5):60-64. doi:10.3969/j.issn.1001-3482.2018.05.013
LIAO N S, ZHANG H, ZHANG S M, et al. Experimental research of pipeline free span detection under moving vibration excitation[J]. Oil Field Equipment, 2018, 47(5): 60-64.
doi: 10.3969/j.issn.1001-3482.2018.05.013
10 张行,杜书强,张仕民,等.基于管内主动激励的管道悬空检测模拟分析[J].石油机械,2017,45(8):105-110.
ZHANG H, DU S Q, ZHANG S M, et al. Simulation analysis of pipeline free span detection based on inner pipe active excitation[J]. China Petroleum Machinery, 2017, 45(8): 105-110.
11 张行,李振林, 啜广山,等.海底管道悬空锤击内检测方法及振动信号分析[J].石油机械,2023,51(3):68-75.
ZHANG H, LI Z L, CHUO G S, et al. Internal detection method and vibration signal analysis of suspended hammering of submarine pipelines[J]. China Petroleum Machinery, 2023, 51(3): 68-75.
12 贾邦龙,帅健,张银辉.海底管道悬空段状态检测及安全性评价[J].油气储运,2021,40(6):658-663. doi:10.6047/j.issn.1000-8241.2021.06.008
JIA B L, SHUAI J, ZHANG Y H. State detection and safety evaluation of submarine suspended pipeline[J]. Oil & Gas Storage and Transportation, 2021, 40(6): 658-663.
doi: 10.6047/j.issn.1000-8241.2021.06.008
13 黄维璇,李四平.刚体碰撞问题的Hamilton原理及其应用[J].中国科学:物理学 力学 天文学,2023,53(5):77-88. doi:10.1360/sspma-2022-0351
HUANG W X, LI S P. Hamilton's principle for rigid body collision problems and its applications[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2023, 53(5): 77-88.
doi: 10.1360/sspma-2022-0351
14 黄杰,陈浩,刘国军,等.埋地铁磁管道环焊缝非开挖定位技术研究[J].机械科学与技术,2020,39(7):1048-1052.
HUANG J, CHEN H, LIU G J, et al. Research of non-excavation positioning technology of girth weld in underground ferromagnetic pipeline[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(7): 1048-1052.
15 胡玉飞,张建超,陈湛,等.内部激励下高速动车齿轮箱振动响应评估[J].北京交通大学学报,2022,46(4):148-156. doi:10.11860/j.issn.1673-0291.20210173
HU Y F, ZHANG J C, CHEN Z, et al. Evaluation of gearbox vibration response in high-speed train under internal excitation[J]. Journal of Beijing Jiaotong University, 2022, 46(4): 148-156.
doi: 10.11860/j.issn.1673-0291.20210173
16 赵密,杜修力.时间卷积的局部高阶弹簧-阻尼-质量模型[J].工程力学,2009,26(5):8-18.
ZHAO M, DU X L. High-order model of spring-dashpot-mass model for localizing time convolution[J]. Engineering Mechanics, 2009, 26(5): 8-18.
17 刘兴华.洪水冲刷作用下悬空管道力学响应特性研究[J].油气田地面工程,2022,41(2):11-16,21. doi:10.3969/j.issn.1006-6896.2022.02.003
LIU X H. Study on mechanical response characteristics of suspended pipelines under flood scouring[J]. Oil-Gas Field Surface Engineering, 2022, 41(2): 11-16, 21.
doi: 10.3969/j.issn.1006-6896.2022.02.003
18 许利惟,刘旭,陈福全.塌陷作用下埋地悬空管道的力学响应分析[J].工程力学,2018,35(12):212-219,228.
XU L W, LIU X, CHEN F Q. Mechanical analysis of buried suspended pipeline under the action of collapse[J]. Engineering Mechanics, 2018, 35(12): 212-219, 228.
19 KANTARDGI I G, GOGIN A G. Submarine pipeline stability under stream and waves action[J]. Power Technology and Engineering, 2021, 55: 367-372.
20 XIE Y, MA X F, NING H F. Formation and failure mechanism of submarine suspension pipeline[J]. Oil & Gas Storage and Transportation, 2017, 36: 1436-1442.
21 PENG X L, HAO H, LI Z X. Application of wavelet packet transform in subsea pipeline bedding condition assessment[J]. Engineering Structures, 2012, 39: 50-65.
22 LEE J Y. Variable short-time Fourier transform for vibration signals with transients[J]. Journal of Vibration and Control, 2015, 21(7): 1383-1397.
23 SAFIZADEH M S, LAKIS A A, THOMAS M. Using short-time Fourier transform in machinery diagnosis[C]//Proceedings of the 4th WSEAS International Conference on Electronic, Signal Processing and Control. Wisconsin, Apr. 25-27, 2005.
24 张泽宇,惠记庄,石泽.小波包最优基分解树的降噪滤波方法研究[J].机械科学与技术,2020,39(1):28-34.
ZHANG Z Y, HUI J Z, SHI Z. Research on denoising and filtering method based on wavelet packet optimal base decomposition tree[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(1): 28-34.
[1] 郑永光,杨妹. 典型地层下TBM滚刀刀座系统振动特性实验研究[J]. 工程设计学报, 2024, 31(2): 263-270.
[2] 王月朋,汪步云. 下肢外骨骼助力机器人动力学建模及实验研究[J]. 工程设计学报, 2022, 29(3): 358-369.
[3] 叶锦涛, 刘凤丽, 郝永平, 刘双杰, 郭梦辉, 冯卓航. 一种超低空飞行的仿生扑翼飞行器的设计及分析[J]. 工程设计学报, 2021, 28(4): 473-479.
[4] 刘晓瑜, 田颖, 张明路. 水下机械手动力学研究综述[J]. 工程设计学报, 2021, 28(4): 389-398.
[5] 张锦, 刘佩珊, 殷玉枫. Y形旋转超声波马达的设计与动态特性分析[J]. 工程设计学报, 2021, 28(2): 248-254.
[6] 莫丽, 贾杜平, 毛良杰, 王国荣. 不同气体产量下水平井完井管柱振动机理的试验研究[J]. 工程设计学报, 2020, 27(6): 690-697.
[7] 曹鹏勇, 王建文. 基于STM8S105的智能车结构及控制系统的研究[J]. 工程设计学报, 2020, 27(4): 516-523.
[8] 姚涛, 王志华, 段国林, 王涛. 基于Stewart并联机构的直驱式波能转换器能量转换性能研究[J]. 工程设计学报, 2019, 26(5): 587-593.
[9] 钟强, 骆正山. 油气水三相段塞流引起的海洋立管耦合振动响应[J]. 工程设计学报, 2019, 26(1): 95-101.
[10] 黄志强, 彭珣, 李刚. 可控震源振动器平板-大地接触性质与能量传递研究[J]. 工程设计学报, 2019, 26(1): 102-109.
[11] 黄志强, 彭珣, 李刚. 可控震源振动器平板多频响应分析[J]. 工程设计学报, 2017, 24(6): 648-654.
[12] 凌静秀, 孙伟, 杨晓静, 童昕. 多点分布载荷下TBM刀盘系统振动响应分析[J]. 工程设计学报, 2017, 24(3): 317-322.
[13] 刘铁男, 田松岩, 梁素钰, 李琳, 杜倩. 单轨车轨道部件的瞬态动力学分析[J]. 工程设计学报, 2016, 23(4): 352-357.
[14] 刘杰, 卿启湘, 文桂林. EPB盾构机推进系统振动响应分析[J]. 工程设计学报, 2013, 20(6): 489-494.
[15] 刘亚东, 杨忠炯, 周立强, 胥景. 湿喷机机械臂喷枪振动特性的研究[J]. 工程设计学报, 2013, 20(4): 303-308.