Please wait a minute...
工程设计学报  2024, Vol. 31 Issue (3): 357-367    DOI: 10.3785/j.issn.1006-754X.2024.03.205
可靠性与保质设计     
送风参数对老化箱内部温湿度场的影响研究
孙敏(),卢丰源,赵宇轩,王青春,陈忠加()
北京林业大学 工学院,北京 100083
Study on influence of air supply parameters on temperature and humidity field inside aging chamber
Min SUN(),Fengyuan LU,Yuxuan ZHAO,Qingchun WANG,Zhongjia CHEN()
School of Technology, Beijing Forestry University, Beijing 100083, China
 全文: PDF(3199 KB)   HTML
摘要:

利用老化箱对机械电子元件进行老化筛选,能有效提高产品的可靠性。老化箱内部温湿度场的均匀性决定了其整体性能,这对老化箱功能有至关重要的影响。为了提高老化箱的性能,基于流体力学原理,利用CFD(computational fluid dynamics,计算流体力学)仿真软件对老化箱简化模型进行仿真模拟,并根据仿真结果确定老化箱内部速度场与温度场的分布情况,以优选不同送风温度、送风速度和送风角度组合下的送风方案。仿真试验采用正交试验法,以送风温度、送风速度和送风角度为试验因素,以能量利用系数、温度不均匀系数和相对湿度不均匀系数为评价指标。通过对仿真试验结果进行极差和方差分析可知,送风角度对能量利用系数的影响最显著,送风温度对温度不均匀系数和相对湿度不均匀系数的影响最显著。针对3个评价指标,得到3种最优方案:送风温度为90 ℃、送风速度为10 m/s、送风角度为0°,送风温度为90 ℃、送风速度为12 m/s、送风角度为-10°,以及送风温度为90 ℃、送风速度为8 m/s、送风角度为0°。最后,开展了老化箱内部温湿度测量实验,并与仿真结果进行了对比。结果表明,仿真结果与实验结果的相对误差较小,均在合理范围内,验证了仿真试验的可靠性和有效性。研究以提高老化箱性能和能量利用率为导向,可为同类老化箱的设计及其送风参数的设置提供参考。

关键词: 计算流体力学老化箱送风参数正交试验不均匀系数    
Abstract:

Using aging chamber to screen mechanical and electronic components can effectively improve the reliability of products. The uniformity of the temperature and humidity field inside the aging chamber determines its overall performance, which has a crucial impact on the functionality of the aging chamber. With the goal of enhancing the performance of the aging chamber, the simulation was conducted on the simplified model of aging chamber by using CFD (computational fluid dynamics) software based on the fluid dynamics principle. According to the simulation results, the distribution of velocity field and temperature field inside the aging chamber was determined to optimize the air supply scheme under the combination of different air supply temperature, air supply speed and air supply angle. The orthogonal test method was adopted in the simulation test, with air supply temperature, air supply speed and air supply angle as test factors, and energy utilization coefficient, temperature non-uniformity coefficient and relative humidity non-uniformity coefficient as evaluation indexes. Through range and variance analysis of simulation results, it could be seen that the influence of air supply angle on energy utilization coefficient was the most significant, and the influence of air supply temperature on temperature non-uniformity coefficient and relative humidity non-uniformity coefficient was the most significant. For the three evaluation indexes, three optimal schemes were obtained: air supply temperature of 90 ℃, air supply speed of 10 m/s, air supply angle of 0°, air supply temperature of 90 ℃, air supply speed of 12 m/s, air supply angle of -10°, and air supply temperature of 90 ℃, air supply speed of 8 m/s, air supply angle of 0°. Finally, the temperature and humidity measurement experiment inside the aging chamber was carried out and compared with the simulation results. The results showed that the relative errors between the simulation results and the experimental results were small and within a reasonable range, which verified the reliability and effectiveness of the simulation test. The research is oriented to improve the performance and energy utilization of aging chamber, which can provide reference for the design of similar aging chambers and the setting of air supply parameters.

Key words: computational fluid dynamics    aging chamber    air supply parameter    orthogonal test    non-uniformity coefficient
收稿日期: 2023-10-16 出版日期: 2024-06-27
CLC:  TH 17  
基金资助: 国家自然科学基金资助项目(51475255)
通讯作者: 陈忠加     E-mail: 1061758591@qq.com;chenzhongjia@bjfu.edu.cn
作者简介: 孙 敏(1998—),女,湖南娄底人,硕士生,从事热力学仿真研究,E-mail: 1061758591@qq.com,https://orcid.org/0009-0008-3094-6995
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
孙敏
卢丰源
赵宇轩
王青春
陈忠加

引用本文:

孙敏,卢丰源,赵宇轩,王青春,陈忠加. 送风参数对老化箱内部温湿度场的影响研究[J]. 工程设计学报, 2024, 31(3): 357-367.

Min SUN,Fengyuan LU,Yuxuan ZHAO,Qingchun WANG,Zhongjia CHEN. Study on influence of air supply parameters on temperature and humidity field inside aging chamber[J]. Chinese Journal of Engineering Design, 2024, 31(3): 357-367.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.03.205        https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I3/357

水平因素

A(送风温度)/

B(送风速度)/(m/s)C(送风角度)/(o)
1508-10
270100
3901210
表1  老化箱送风参数的正交试验因素水平表
序号因素方案
A/℃B/(m/s)C/(o)
1508-10A1B1C1
250100A1B2C2
3501210A1B3C3
47080A2B1C2
5701010A2B2C3
67012-10A2B3C1
790810A3B1C3
89010-10A3B2C1
990120A3B3C2
表2  老化箱送风参数的正交试验方案
图1  老化箱工作原理
图2  老化箱三维简化模型
图3  老化箱三维模型网格划分
图4  老化箱内距底面600 mm处水平面的流线图
图5  老化箱内距底面600 mm处水平面的温度云图
序号方案能量利用系数温度不均匀系数相对湿度不均匀系数
1A1B1C10.909 60.077 10.125 2
2A1B2C21.058 60.078 80.119 7
3A1B3C31.045 00.080 20.127 5
4A2B1C21.028 10.054 30.104 8
5A2B2C31.029 10.054 10.106 4
6A2B3C10.938 80.050 90.106 8
7A3B1C31.061 90.040 20.092 0
8A3B2C10.983 40.038 80.098 7
9A3B3C21.051 30.039 50.099 0
表3  不同送风方案下老化箱的性能评价指标
分析指标因素A因素B因素C
K13.013 22.999 62.831 8
K22.996 03.071 13.138 0
K33.096 63.035 13.136 0
k11.004 40.999 90.943 9
k20.998 71.023 71.046 0
k31.032 21.011 71.045 3
R0.033 50.023 80.102 1
优水平A3B2C2
表4  各因素对老化箱能量利用系数影响的极差分析结果
图6  老化箱能量利用系数的影响因素位级图
分析指标因素A因素B因素C
K10.236 10.171 60.166 8
K20.159 30.171 70.172 6
K30.118 50.170 60.174 5
k10.078 70.057 20.055 6
k20.053 10.057 20.057 5
k30.039 50.056 90.058 2
R0.039 20.000 30.002 6
优水平A3B3C1
表5  各因素对老化箱温度不均匀系数影响的极差分析结果
图7  老化箱温度不均匀系数的影响因素位级图
分析指标因素A因素B因素C
K10.372 40.322 00.330 7
K20.318 00.324 80.323 5
K30.289 70.333 30.325 9
k10.124 10.107 30.110 2
k20.106 00.108 30.107 8
k30.096 60.111 10.108 6
R0.027 50.003 80.002 4
优水平A3B1C2
表6  各因素对老化箱相对湿度不均匀系数影响的极差分析结果
图8  老化箱相对湿度不均匀系数的影响因素位级图
方差来源离差平方和自由度均方P显著性
总和0.024 508 10380.012 254 051
因素A0.001 930 19620.000 965 0981.881 5720.347 033
因素B0.000 852 05620.000 426 0280.830 5910.546 272
因素C0.020 700 00920.010 350 00420.178 5500.047 218*
误差0.001 025 84220.000 512 921
表7  各因素对老化箱能量利用系数影响的方差分析结果
图9  各因素对老化箱能量利用系数的贡献率
方差来源离差平方和自由度均方P显著性
总和0.002 390 04180.001 195 019
因素A0.002 376 96020.001 188 4801 128.303 7970.000 886**
因素B0.000 000 24720.000 000 1230.117 0890.895 184
因素C0.000 010 72720.000 005 3635.091 7720.164 156
误差0.000 002 10720.000 001 053
表8  各因素对老化箱温度不均匀系数影响的方差分析结果
图10  各因素对老化箱温度不均匀系数的贡献率
方差来源离差平方和自由度均方P显著性
总和0.001 243 42180.000 621 709
因素A0.001 177 72720.000 588 86335.002 7740.027 776*
因素B0.000 023 08720.000 011 5430.686 1500.593 067
因素C0.000 008 96020.000 004 4800.266 2970.789 704
误差0.000 033 64720.000 016 823
表9  各因素对老化箱相对湿度不均匀系数影响的方差分析结果
图11  各因素对老化箱相对湿度不均匀系数的贡献率
图12  老化箱实物图及箱内测点布置示意
测点送风温度为80 ℃送风温度为90 ℃
实测值仿真值实测值仿真值
I78.676.786.986.5
II77.377.887.087.0
III76.976.188.387.1
IV78.578.687.986.7
V77.278.188.185.8
VI78.777.887.186.7
VII77.678.288.286.8
VIII77.878.087.787.2
IX78.177.587.285.8
X78.876.788.186.5
XI78.478.987.887.0
XII77.978.788.288.1
XIII78.577.887.986.7
表10  老化箱内部温度的实测值与仿真值对比 (℃)
测点相对湿度为80%相对湿度为90%
实测值仿真值实测值仿真值
80.381.689.989.4
80.580.590.090.0
80.081.090.090.0
80.281.290.190.4
表11  老化箱内部相对湿度的实测值与仿真值对比 (%)
1 马超群,张凯,柴麟,等.机械式自动垂直钻具执行机构内部流场规律研究[J].工程设计学报,2022,29(3):384-393. doi:10.3785/j.issn.1006-754X.2022.00.044
MA C Q, ZHANG K, CHAI L, et al. Research on internal flow field law of mechanical automatic vertical drilling tool actuator[J]. Chinese Journal of Engineering Design, 2022, 29(3): 384-393.
doi: 10.3785/j.issn.1006-754X.2022.00.044
2 王振文,吴敏,徐新民,等.热泵烘房结构及参数优化仿真设计[J].农业机械学报,2020,51():464-475. doi:10.6041/j.issn.1000-1298.2020.S1.055
WANG Z W, WU M, XU X M, et al. Optimal simulation design of structure and parameter in heat pump drying room[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(): 464-475.
doi: 10.6041/j.issn.1000-1298.2020.S1.055
3 曹如玥.基于CFD的蜂箱调温过程数值模拟及实验研究[D].昆明:昆明理工大学,2021.
CAO R Y. Numerical simulation and experimental research of beehive temperature adjustment process based on CFD[D]. Kunming: Kunming University of Science and Technology, 2021.
4 林海,叶永伟,陈建,等.基于CFD的汽车车身烘房节能研究[J].机械制造,2010,48(10):71-73. doi:10.3969/j.issn.1000-4998.2010.10.025
LIN H, YE Y W, CHEN J, et al. Research on energy saving of oven for automobile body based on CFD[J]. Machinery, 2010, 48(10): 71-73.
doi: 10.3969/j.issn.1000-4998.2010.10.025
5 魏亚兴.矿井通风井巷热交换规律数值试验研究[D].长沙:中南大学,2012.
WEI Y X. Numerical test research on the law of mine ventilation roadway heat exchange[D]. Changsha: Central South University, 2012.
6 杜林昕,黄亚宇,查蕾蕾,等.基于CFD的密集式烤房气流均匀性研究[J].农业装备与车辆工程,2021,59(12):126-129. doi:10.3969/j.issn.1673-3142.2021.12.027
DU L X, HUANG Y Y, ZHA L L, et al. Research on air flow uniformity of intensive barn based on CFD[J]. Agricultural Equipment & Vehicle Engineering, 2021, 59(12): 126-129.
doi: 10.3969/j.issn.1673-3142.2021.12.027
7 LI J X, LI A G, ZHANG C, et al. Analysis and optimization of air distribution and ventilation performance in a generator hall using an innovative attached air supply mode[J]. Building and Environment, 2022, 216: 108993.
8 白志鹏.可压缩流体的瓦斯抽采管路流阻计算方法研究[J].煤,2016,25(4):8-11. doi:10.3969/j.issn.1005-2798.2016.04.003
BAI Z P. Study on calculation method of gas drainage pipeline flow resistance of compressible fluid[J]. Coal, 2016, 25(4): 8-11.
doi: 10.3969/j.issn.1005-2798.2016.04.003
9 陈忠加,卢丰源,雷雯雯,等.基于强迫对流的热风干燥烘房送风速度及温度优选[J].农业工程学报,2022,38():37-46. doi:10.11975/j.issn.1002-6819.2022.z.005
CHEN Z J, LU F Y, LEI W W, et al. Air velocity and temperature optimization of hot air drying room based on forced convection[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 38(Supplement 1): 37-46.
doi: 10.11975/j.issn.1002-6819.2022.z.005
10 任塞峰,唐汝宁,李军军.化学分析实验室换气次数数值模拟分析[J].建筑热能通风空调,2021,40(7):70-74. doi:10.3969/j.issn.1003-0344.2021.07.018
REN S F, TANG R N, LI J J. Research on numerical simulation of air exchange rate in chemical analysis laboratory[J]. Building Energy & Environment, 2021, 40(7): 70-74.
doi: 10.3969/j.issn.1003-0344.2021.07.018
11 周鹏.高炉风口回旋区燃烧特性的数值模拟研究[D]. 赣州:江西理工大学,2022. doi:10.1016/j.fuel.2021.122490
ZHOU P. Numerical study of combustion characteristics in the raceway of an ironmaking blast furnace[D]. Ganzhou: Jiangxi University of Science and Technology, 2022.
doi: 10.1016/j.fuel.2021.122490
12 李强,孟利民,周琪,等.基于机械虹膜机构的新型摆动泵及其流场分析[J].机电工程,2023,40(10):1607-1615. doi:10.3969/j.issn.1001-4551.2023.10.017
LI Q, MENG L M, ZHOU Q, et al. Flow characteristics of new swing pump based on mechanical iris mechanism[J]. Journal of Mechanical & Electrical Engineering, 2023, 40(10): 1607-1615.
doi: 10.3969/j.issn.1001-4551.2023.10.017
13 吴昊,龙铁明,蓝文清.高低温环境试验箱循环风机优化设计[J].环境技术,2022,40(6):184-190. doi:10.3969/j.issn.1004-7204.2022.06.041
WU H, LONG T M, LAN W Q. Optimization of blower in enviornmental test chamber[J]. Environmental Technology, 2022, 40(6): 184-190.
doi: 10.3969/j.issn.1004-7204.2022.06.041
14 高祥,马玫.双轴型热空气交换试验箱的研制[J].合成材料老化与应用,2022,51(4):109-111. doi:10.3969/j.issn.1671-5381.2022.4.hccllhyyy202204035
GAO X, MA M. Development of biaxial hot air exchange test chamber[J]. Synthetic Materials Aging and Application, 2022, 51(4): 109-111.
doi: 10.3969/j.issn.1671-5381.2022.4.hccllhyyy202204035
15 陈忠加,雷雯雯,王青春.基于温度和速度均匀性的侧送风烘房设计及仿真[J].农业工程学报,2021,37(19):18-26. doi:10.11975/j.issn.1002-6819.2021.19.003
CHEN Z J, LEI W W, WANG Q C. Design and simulation of side air supply drying room based on temperature and velocity homogeneity[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 37(19): 18-26.
doi: 10.11975/j.issn.1002-6819.2021.19.003
16 方一鸣.侧送风气流组织设计计算[J].城市建筑,2013(8):268. doi:10.3969/j.issn.1673-0232.2013.08.238
FANG Y M. The design and calculation of side air supply airflow organization[J]. Urbanism and Architecture, 2013(8): 268.
doi: 10.3969/j.issn.1673-0232.2013.08.238
17 GUI X L, LUO X B, WANG X P, et al. Computational fluid dynamic (CFD) investigation of thermal uniformity in a thermal cycling based calibration chamber for MEMS[J]. Heat and Mass Transfer, 2015, 51(12): 1705-1715.
18 张伟,严平.热风干燥烘房气流速度场均匀性优化[J].轻工机械,2019,37(1):83-87. doi:10.3969/j.issn.1005-2895.2019.01.016
ZHANG W, YAN P. Optimization of airflow velocity field uniformity in hot air drying kiln[J]. Light Industry Machinery, 2019, 37(1): 83-87.
doi: 10.3969/j.issn.1005-2895.2019.01.016
19 李会知,侯孟言,邢金超.单侧供热汽车烘干房气流组织数值模拟研究[J].山东农业大学学报(自然科学版),2021,52(1):84-90. doi:10.3969/j.issn.1000-2324.2021.01.015
LI H Z, HOU M Y, XING J C. Study on numerical simulation for airflow distribution in automotive baking room with a single side heating[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2021, 52(1): 84-90.
doi: 10.3969/j.issn.1000-2324.2021.01.015
20 中国工业机械联合会. 湿热试验箱技术条件: [S].北京:中国标准出版社,2006:1-12.
China Machinery Industry Federation. Specifications for damp heat testing chambers: [S]. Beijing: Standards Press of China, 2006: 1-12.
[1] 陈洋, 任成祖, 邓晓帆, 陈光, 靳新民. 基于双盘直槽研磨的圆柱滚子自转运动研究[J]. 工程设计学报, 2021, 28(2): 179-189.
[2] 郑明军, 赵晨磊, 吴文江, 杨摄. 全地形移动机器人车身结构分析与优化[J]. 工程设计学报, 2021, 28(2): 195-202.
[3] 王玉璞, 程文明, 杜润, 王书标, 杨行舟, 翟守才. 大型门式起重机风荷载响应仿真分析[J]. 工程设计学报, 2020, 27(2): 239-246.
[4] 郑明军, 杨摄, 吴文江, 赵晨磊. 铁路轨道除沙车抛沙板参数优化[J]. 工程设计学报, 2020, 27(1): 87-93.
[5] 刘春青, 王文汉. 基于人工神经网络-遗传算法的展成法球面精密磨削参数优化[J]. 工程设计学报, 2019, 26(4): 395-402.
[6] 唐荣江, 胡宾飞, 张淼, 陆增俊, 肖飞, 赖凡. 基于CFD和试验的商用车高位引气管预滤性能的分析与优化[J]. 工程设计学报, 2019, 26(4): 403-408.
[7] 高志来, 邱自学, 任东, 崔德友, 徐新朋. 桥式龙门铣床横梁结构设计与优化[J]. 工程设计学报, 2019, 26(1): 56-64.
[8] 崔雪斌, 张宏, 石涛. 基于链环不均匀系数的履带车辆行驶平顺性分析[J]. 工程设计学报, 2018, 25(1): 71-78.
[9] 李彦奎, 吕彦明, 倪明明. 基于正交试验的航空叶片精锻模具磨损分析[J]. 工程设计学报, 2017, 24(6): 632-637.
[10] 邢梦龙, 刘佳鑫, 路春光, 蒋炎坤. 平地机冷却风扇的改进与信噪比分析[J]. 工程设计学报, 2017, 24(5): 563-571.
[11] 马晓丽, 马履中, 周兆忠. 正交-遗传试验算法的分析与应用[J]. 工程设计学报, 2005, 12(6): 334-337.