Please wait a minute...
工程设计学报  2024, Vol. 31 Issue (3): 340-347    DOI: 10.3785/j.issn.1006-754X.2024.04.301
机械优化设计     
基于遗传算法的集中式传动系统齿轮修形及模态优化研究
余晓波1,2(),陈素姣1,2(),章勇华1,2,马彬隽1,2
1.柳工柳州传动件有限公司 传动件研究所,广西 柳州 545007
2.广西柳工机械股份有限公司,广西 柳州 545007
Research on gear modification and modal optimization of centralized transmission system based on genetic algorithm
Xiaobo YU1,2(),Sujiao CHEN1,2(),Yonghua ZHANG1,2,Binjun MA1,2
1.Driveline Research and Development Department, Liugong Liuzhou Driveline Co. , Ltd. , Liuzhou 545007, China
2.Guangxi Liugong Machinery Co. , Ltd. , Liuzhou 545007, China
 全文: PDF(4250 KB)   HTML
摘要:

集中式传动系统布局紧凑,部件间距小,因此对其NVH(noise, vibration, harshness,噪声、振动与声振粗糙度)控制提出了更高要求。以某工程机械的集中式传动系统为研究对象,首先,进行了其振动噪声测试,并分析了齿轮微观修形原理;其次,考虑了系统模态共振与齿轮啮合的相互耦合,建立了该传动系统的有限元模型并进行仿真,结果显示,齿轮副接触斑点和模态的仿真结果与测试结果一致,验证了建模方法的可行性;接着,基于遗传算法求解了齿轮微观修形参数,实现了齿轮微观修形的最优设计,并通过模态优化来避免系统共振;最后,进行实验验证,结果表明,齿轮修形后传动系统的噪声降低至95.2 dB,比修形前下降了4.8 dB。采用基于遗传算法的齿轮微观修形和模态优化方法可以降低传动系统的振动噪声,这为集中式传动系统的NVH控制提供了一定参考。

关键词: 传动系统遗传算法微观修形模态分析传递误差    
Abstract:

The centralized transmission system has a compact layout and close component spacing, which puts forward higher requirements for its NVH (noise, vibration, harshness) control. Taking the centralized transmission system of an engineering machinery as the research object, firstly, the vibration and noise test was carried out, and the principle of gear micro-modification was analyzed. Secondly, the mutual coupling of system modal resonance and gear meshing was considered, the finite element model of the transmission system was established, and the simulation results showed that the simulation results of gear pair contact patches and modes were consistent with the test results, which verified the feasibility of the modeling method. Then, based on genetic algorithm, the gear micro-modification parameters were solved, the optimal design of the gear micro-modification was realized, and the resonance of the system was avoided by modal optimization. Finally, the experimental verification was carried out, and the results showed that the noise of the transmission system sample was reduced to 95.2 dB after the gear modification, which was 4.8 dB lower than that before modification. The vibration and noise of the transmission system can be reduced by using micro-modification and modal optimization method based on genetic algorithm, which provides a reference for NVH control of the centralized transmission system.

Key words: transmission system    genetic algorithm    micro-modification    modal analysis    transmission error
收稿日期: 2024-03-10 出版日期: 2024-06-27
CLC:  TH 113  
基金资助: 广西重点研发计划项目(桂科AB24010270);广西科技重大专项项目(桂科AA22068065)
通讯作者: 陈素姣     E-mail: yuxiaobo@liugong.com;chsj@liugong.com
作者简介: 余晓波(1995—),男,广西柳州人,工程师,学士,从事工程机械变速器NVH及CAE仿真等研究,E-mail: yuxiaobo@liugong.com, http://orcid.org/0009-0005-6523-7927
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
余晓波
陈素姣
章勇华
马彬隽

引用本文:

余晓波,陈素姣,章勇华,马彬隽. 基于遗传算法的集中式传动系统齿轮修形及模态优化研究[J]. 工程设计学报, 2024, 31(3): 340-347.

Xiaobo YU,Sujiao CHEN,Yonghua ZHANG,Binjun MA. Research on gear modification and modal optimization of centralized transmission system based on genetic algorithm[J]. Chinese Journal of Engineering Design, 2024, 31(3): 340-347.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.04.301        https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I3/340

图1  某工程机械的集中式传动系统
图2  集中式传动系统振动噪声测试现场
图3  集中式传动系统振动噪声测试数据Colormap分析结果
图4  齿轮微观修形原理
图5  集中式传动系统模型
图6  测试与仿真得到的变速器齿轮副接触斑点的对比
图7  优化前集中式传动系统1阶模态
图8  优化后集中式传动系统1阶模态
优化参数初始值目标值权重系数
传递误差峰峰值/μm3.2400.988
齿面单位长度法向载荷/(N/mm)286175.50.012
表1  一级主动齿轮的优化参数
图9  一级主动齿轮修形方案寻优结果
图10  传递误差峰峰值与齿面单位长度法向载荷的关系
图11  齿轮微观修形参数与传递误差峰峰值的关系
修形参数一级主动齿轮二级主动齿轮
螺旋线鼓形量3.586.42
螺旋线斜度30.4319.70
齿顶修缘量6.687.95
齿廓鼓形量4.595.31
齿廓斜度-6.14-10.22
表2  主动齿轮微观修形参数 (μm)
图12  修形前后齿轮副啮合线偏移量对比
图13  修形后主动齿轮齿面单位长度法向载荷
图14  修形前后集中式传动系统样件噪声对比
图15  修形前后集中式传动系统样件模态分析结果
1 朱才朝,陆波,宋朝省. 大功率船用齿轮箱系统耦合非线性动态特性研究[J].机械工程学报,2009,45(9):31-35. doi:10.3901/JME.2009.09.031
ZHU C C, LU B, SONG C S. Study of coupled nonlinear dynamic characteristics of high-power marine gearbox systems[J]. Journal of Mechanical Engineering, 2009, 45(9): 31-35.
doi: 10.3901/JME.2009.09.031
2 何渠,贺敬良,何畅然,等. 弧齿锥齿轮传动仿真分析及修形优化[J].北京信息科技大学学报(自然科学版),2014,29(6):37-40.
HE Q, HE J L, HE C R, et al. Simulation analysis and modification optimization of bevel gear transmission with curved teeth[J]. Journal of Beijing University of Information Science and Technology (Natural Science Edition), 2014, 29(6): 37-40.
3 邢宏福,杨朝会,于楠,等. 基于Romax的斜齿圆柱齿轮的微观参数优化[J].机械传动,2021,45(6):85-89,138. doi:10.16578/j.issn.1004.2539.2021.06.013
XING H F, YANG C H, YU N, et al. Optimization of micro parameters of helical cylindrical gears based on Romax[J]. Mechanical Transmission, 2021, 45(6): 85-89, 138.
doi: 10.16578/j.issn.1004.2539.2021.06.013
4 鄢万斌,余晓波,卢再毅,等.变速器振动噪声分析及轮齿修形优化[J].液压与气动,2023(7):139-146. doi:10.11832/j.issn.1000-4858.2023.07.017
YAN W B, YU X B, LU Z Y, et al. Transmission vibration and noise analysis and gear tooth modification optimization [J]. Chinese Hydraulics & Pneumatics, 2023(7): 139-146.
doi: 10.11832/j.issn.1000-4858.2023.07.017
5 CARBONELLI A, RIGAUD E, PERRET L J. Vibro-acoustic analysis of geared systems: predicting and controlling the whining noise[C]//Tomotive NVH Technology. Berlin: Springer International Publishing, 2016: 63-79.
6 吕建锋,聂晓根,盛裕民,等.基于渐开线齿轮轮廓修形的疲劳寿命分析[J].机械制造与自动化,2024(1):24-28.
LÜ J F, NIE X G, SHENG Y M, et al. Fatigue life analysis based on involute gear profile modification[J]. Machine Building & Automation, 2024(1): 24-28.
7 王文平,项昌乐,刘辉. 基于 FEM/BEM 变速器箱体辐射噪声的研究[J].噪声与振动控制,2007(5):107-111. doi:10.3969/j.issn.1006-1355.2007.05.030
WANG W P, XING C L, LIU H. Research on radiated noise of transmission box based on FEM/BEM[J]. Noise and Vibration Control, 2007(5): 107-111.
doi: 10.3969/j.issn.1006-1355.2007.05.030
8 IAN H, JIA S X, JIANDE W. The dynamic modeling of a spur in mesh including friction and a crack[J]. Mechanical Systems and Signal Processing, 2001, 15(5): 831-853.
9 张波,连婷,沈娴.改进灰狼优化算法的减速器齿轮修形方法[J].煤炭技术,2023(11):217-220. doi:10.1109/ifeea60725.2023.10429617
ZHANG B, LIAN T, SHEN X. Reduction gear modification method with improved grey wolf optimization algorithm[J]. Coal Technology, 2023(11): 217-220.
doi: 10.1109/ifeea60725.2023.10429617
10 王振博,郑鹏,刘逸飞.基于神经网络优化的正交试验内齿轮齿面偏载矫正研究[J].机械传动,2023(8):16-23.
WANG Z B, ZHENG P, LIU Y F. Research on tooth surface offset load correction of internal gear in orthogonal test based on neural network optimization[J]. Mechanical Transmission, 2023(8): 16-23.
11 杨霞,王忠桃. 基于改进PSO算法的掘进机减速器齿轮修形参数优化[J].煤炭技术,2023(2):215-217.
YANG X, WANG Z T. Optimization of gear modification parameters of roadheader reducer based on improved PSO algorithm[J]. Coal Technology, 2023(2): 215-217.
12 刘欣荣,汪中厚,久保爱三.基于混沌蚁群优化算法的齿轮传动误差研究[J].系统仿真学报,2019(9):1942-1949.
LIU X R, WANG Z H, AIZO K B. Research on gear transmission error based on chaotic ant colony optimization algorithm[J]. Journal of System Simulation, 2019(9): 1942-1949.
13 杨丽,佟操,陈闯,等. 基于Kriging模型和遗传算法的齿轮修形减振优化[J].航空动力学报,2017(6):1412-1418.
YANG L, TONG C, CHEN C, et al. Optimization of gear modification and vibration reduction based on Kriging model and genetic algorithm[J]. Journal of Aerodynamics, 2017(6): 1412-1418.
14 杜静,魏静,秦朝烨. Romax Designer入门详解与实例[M].北京:机械工业出版社,2012.
DU J, WEI J, QIN Z Y. Romax Designer introductory details and examples[M]. Beijing: China Machine Press, 2012.
15 赫修智. 齿轮箱关键部件故障振动特征提取与分析[D].吉林:吉林大学,2021.
HE X Z. Extraction and analysis of fault vibration features of key components of gearboxes[D]. Jilin: Jilin University, 2021.
16 杨红波,史文库,陈志勇,等. 基于某二级减速齿轮系统的齿面修形优化[J].吉林大学学报(工学版),2022,52(7):1541-1551.
YANG H B, SHI W K, CHEN Z Y, et al. Optimization of tooth surface modification based on a secondary reduction gear system[J]. Journal of Jilin University (Engineering Edition), 2022, 52(7): 1541-1551.
[1] 崔衡,马宗方,宋琳,刘超,韩怡萱. 基于连续顶点分区的混凝土3D打印路径规划算法[J]. 工程设计学报, 2024, 31(3): 271-279.
[2] 冀炳晖,茅健,钱波. 基于遗传算法-模糊PID的双喷头FDM3D打印机温度控制方法[J]. 工程设计学报, 2024, 31(2): 151-159.
[3] 田雅琴,胡梦辉,刘文涛,侯寅智. 基于跳点搜索-遗传算法的自主移动机器人路径规划[J]. 工程设计学报, 2023, 30(6): 697-706.
[4] 赵迪,陈果,陈小利,王熊锦. 轮式搜救机器人地形自适应机构设计及越障性能分析[J]. 工程设计学报, 2023, 30(5): 579-589.
[5] 窦方健,邱清盈,管成,邵锦杰,吴海峰. 大转动惯量缠绕机加减速曲线优化设计[J]. 工程设计学报, 2023, 30(4): 503-511.
[6] 米鑫,李虹,郭彦青,高宏伟,王浩楠,宁羿帆. 基于线性回归的单柱塞泵单向阀参数优化[J]. 工程设计学报, 2022, 29(6): 705-712.
[7] 李琴,贾英崎,黄玉峰,李刚,叶闯. 一种工业机器人多目标轨迹优化算法[J]. 工程设计学报, 2022, 29(2): 187-195.
[8] 谢苗, 张保国, 王鹏飞, 李政. 基于相似理论的掘进机主动激振截割性能研究[J]. 工程设计学报, 2021, 28(5): 576-584.
[9] 丁述勇, 张征, 丁文洁, 林勇. 多巷道式立体车库优化设计与车辆存取策略研究[J]. 工程设计学报, 2021, 28(4): 443-449.
[10] 张帅, 韩军, 涂群章, 杨小强, 杨旋. 基于GA-NLP的剪刀式折叠桥梁展桥机构多目标优化设计[J]. 工程设计学报, 2020, 27(1): 67-75.
[11] 刘春青, 王文汉. 基于人工神经网络-遗传算法的展成法球面精密磨削参数优化[J]. 工程设计学报, 2019, 26(4): 395-402.
[12] 王哲, 陈勇, 曹展, 李光鑫, 左扣成. 纯电动汽车两挡变速器减振降噪研究[J]. 工程设计学报, 2019, 26(3): 280-286.
[13] 马天兵, 王孝东, 杜菲, 王鑫泉. 基于GA-SVM的刚性罐道故障诊断[J]. 工程设计学报, 2019, 26(2): 170-176.
[14] 李响, 王阳, 童冠, 陈波文, 何彬. 四边简支新型类方形蜂窝夹层结构振动特性研究[J]. 工程设计学报, 2018, 25(6): 725-734.
[15] 邓星, 于兰峰, 雷聪, 徐江平, 肖泽平. 基于响应面法的无轨伸缩式门式起重机轻量化设计[J]. 工程设计学报, 2018, 25(3): 288-294.