Please wait a minute...
工程设计学报  2017, Vol. 24 Issue (3): 280-285    DOI: 10.3785/j.issn.1006-754X.2017.03.006
保质设计     
分离脱落电连接器钢珠锁紧机构解锁可靠性分析
陈文华, 杜勝利, 杨帆, 潘骏, 钱萍
浙江理工大学 浙江省机电产品可靠性技术研究重点实验室, 浙江 杭州 310018
Unlocking reliability analysis of the ball locking mechanism for separating electrical connector
CHEN Wen-hua, DU Sheng-li, YANG Fan, PAN Jun, QIAN Ping
Zhejiang Province Key Laboratory of Reliability Technology for Mechanical and Electrical Product, Zhejiang Sci-Tech University, Hangzhou 310018, China
 全文: PDF(2024 KB)   HTML
摘要:

针对分离脱落电连接器钢珠锁紧机构解锁可靠性问题,通过分析其解锁原理,建立了钢珠锁紧机构解锁过程的力学模型,进而得到了机构解锁临界点的解锁阻力,并对锁紧钢珠的自锁情况进行了分析,得到了机构自锁的条件。通过分析影响机构解锁阻力的各个参数的分布情况并利用蒙特卡洛分析方法,得到了机构解锁阻力的概率分布和机构自锁角的概率分布,并对该分布进行检验,然后利用极大似然估计法得到各自的均值和方差,最后根据该型产品机械解锁力的允许范围以及机构在解锁临界点的可靠度和机构不发生自锁的可靠度,并利用串联可靠性模型得到钢珠锁紧机构解锁的可靠度。结果表明,该方法能够有效地分析钢珠锁紧机构的解锁可靠性,并为其可靠性设计提供参考。

关键词: 钢珠锁紧机构解锁阻力蒙特卡洛可靠性    
Abstract:

Aiming at the unlocking reliability of the ball locking mechanism for separating electrical connector, the mechanical model for the mechanism unlocking process is established by the analysis of the unlocking principle. The unlocking resistance of the critical point of the mechanism was obtained, and the self-locking conditions for the mechanism were acquired by analyzing the self-locking situation of the locking ball. Based on the analysis of the distribution of various parameters affecting the unlocking resistance for the mechanism, the probability distribution of the locking resistance and the self-locking angle were attained by Monte Carlo method, then the two distributions were tested. The means and variances of the two distributions were calculated by maximum likelihood estimation method. Finally, according to the allowable range of mechanical unlocking force, the unlocking reliability at the critical point and the reliability of non-self-locking were obtained respectively, and the unlocking reliability for the mechanism was evaluated by series reliability model. The results show that the proposed method is effective for the analysis of the ball locking mechanism unlocking reliability and it provides a reference criterion for the mechanism reliability design.

Key words: ball locking mechanism    unlocking resistance    Monte Carlo    reliability
收稿日期: 2016-10-09 出版日期: 2017-06-28
CLC:  TH11  
基金资助:

国防技术基础科研项目;装备预研基金资助项目;浙江省重点科技创新团队项目(2010R50005)

作者简介: 陈文华(1963-),男,浙江杭州人,教授,博士生导师,博士,从事机电产品可靠性技术研究,E-mail: chenwh@zstu.edu.cn, http://orcid.org//0000-0003-3722-123X
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈文华
杜勝利
杨帆
潘骏
钱萍

引用本文:

陈文华, 杜勝利, 杨帆, 潘骏, 钱萍. 分离脱落电连接器钢珠锁紧机构解锁可靠性分析[J]. 工程设计学报, 2017, 24(3): 280-285.

CHEN Wen-hua, DU Sheng-li, YANG Fan, PAN Jun, QIAN Ping. Unlocking reliability analysis of the ball locking mechanism for separating electrical connector[J]. Chinese Journal of Engineering Design, 2017, 24(3): 280-285.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2017.03.006        https://www.zjujournals.com/gcsjxb/CN/Y2017/V24/I3/280

[1] 张战峰, 张明畏.特种连接器技术发展概况[J].机电元件, 1994, 14(6): 54-64. ZHANG Zhan-feng, ZHANG Ming-wei. Development of special connector technology[J]. Electromechanical Components, 1994, 14(6): 54-64.
[2] RAO S S. Probabilistic approach to mechanisms[J]. Mechanism & Machine Theory, 1986, 21(4): 362-363.
[3] ANI L, HEPING L, YANG L, et al. Dynamical analysis of the root lock mechanism of the space deployable mast[C]//International Conference on Measuring Technology & Mechatronics Automation. Shanghai: IEEE, 2011: 1133-1136.
[4] MEALIER N, DAU F, GUILLAUMAT L, et al. Reliability assessment of locking systems[J]. Probabilistic Engineering Mechanics, 2010, 25(1): 67-74.
[5] CAI D Y, LIU F J, JIAO X W, et al. Reliability-based analysis and optimization of spring locking mechanism[J]. Journal of Mechanical Strength, 2015, 37(1): 94-98.
[6] 刘志群, 周红, 刘伟, 等.某型飞机舱门锁机构卡滞可靠性分析[J].机械科学与技术, 2012, 29(12): 39-42. LIU Zhi-qun, ZHOU Hong, LIU Wei, et al. Seizure reliability analysis of lock machine for aircraft hatch door[J]. Mechanical Science and Technology for Aerospace Engineering, 2012, 29(12): 39-42.
[7] 檀中强, 邓国兵, 赵明岩.某伸展臂锁定机构的可靠性分析[J].机床与液压, 2015, 43(21): 197-200. TAN Zhong-qiang, DENG Guo-bing, ZHAO Ming-yan. Reliability analysis of locking mechanism of a deployable mast[J]. Machine Tool & Hydraulics, 2015, 43(21): 197-200.
[8] 吴建云, 王春洁, 汪瀚.基于蒙特卡洛法的卫星天线板展开精度分析[J].航天返回与遥感, 2013, 34(6): 89-94. WU Jian-yun, WANG Chun-jie, WANG Han, Accuracy analysis of satellite antenna plate deployment based on Monte Carlo method[J]. Spacecraft Recovery & Remote Sensing, 2013, 34(6): 89-94.
[9] 银恺, 赖雄鸣, 吴正辉.基于ELM的可折支撑锁机构可靠性及其敏感度分析[J].工程设计学报, 2012, 19(6): 417-421. YIN Kai, LAI Xiong-ming, WU Zheng-hui. Reliability and its sensitivity analyses for the folding support locking mechanism using extreme learning machine[J]. Chinese Journal of Engineering Design, 2012, 19(6): 417-421.
[10] 程燕平.理论力学[M].哈尔滨: 哈尔滨工业大学出版社, 2016: 194-196. CHENG Yan-ping. Theoretical mechanics[M]. Harbin: Harbin Institute of Technology Press, 2016: 194-196.
[11] 吴狄.蜗轮传动自锁可靠性的研究[J].机械设计与制造, 2004(2): 6-7. WU Di. Study on self-locking of worm transmission reliability[J]. Machinery Design & Manufacture, 2004(2): 6-7.
[12] 张亚萍, 常小平, 李曙生.矩形解锁脱落电连接器中套管加工工艺研究[J].机械设计与制造, 2010(7): 126-127. ZHANG Ya-ping, CHANG Xiao-ping, LI Shu-sheng. A study of linking processing technic used in rectangular unlock electrical connecting piece[J]. Machinery Design & Manufacture, 2010(7): 126-127.
[13] 刘惟信.机械可靠性设计[M].北京: 清华大学出版社, 1996: 39-40. LIU Wei-xin. Mechanical reliability design[M]. Beijing: Tsinghua University press, 1996: 39-40.
[14] 李九龙, 周凌柯.基于“3σ法则”的显著误差检测[J].计算机与现代化, 2012, 1(1): 10-13. LI Jiu-long, ZHOU Ling-ke. Detecting and identifying gross errors based on “3σ rule”[J]. Computer and Modernization, 2012, 1(1): 10-13.
[15] 徐东涛, 孙志礼. 基于Monte Carlo法的改进型Delta并联机构运动可靠性分析[J]. 机械设计与制造, 2016(10): 167-169. XU Dong-tao, SUN Zhi-li. Kinematic reliability analysis of the modified Delta parallel mechanism based on Monte Carlo method[J]. Machinery Design & Manufacture, 2016(10): 167-169.
[16] JAHANI E, MUHANNA R L, SHAYANFAR M A, et al. Reliability assessment with fuzzy random variables using interval Monte Carlo simulation[J]. Computer-Aided Civil and Infrastructure Engineering, 2014, 29(3): 208-220.
[17] LOREN S, SVNSSON T. Second moment reliability evaluation vs. Monte Carlo simulations for weld fatigue strength[J]. Quality & Reliability Engineering International, 2012, 28(8): 887-8.
[1] 况雨春,钟辉,钟良春. 类圆弧线型螺杆马达的设计与研究[J]. 工程设计学报, 2023, 30(5): 640-649.
[2] 李江昊,肖文生,于文太,王鸿雁,刘顺庆,孙友福. 超深水打桩锤系统的可靠性分析与分配研究[J]. 工程设计学报, 2023, 30(4): 485-494.
[3] 郭鸿杰,梁淑雅,陈文华,钟立强,陈哲文,颜佳辉. 线簧丝倾角对线簧孔式电连接器贮存寿命的影响研究[J]. 工程设计学报, 2023, 30(3): 390-398.
[4] 张正峰,宋小雨,袁晓磊,陈文娟,张伟东. Al/CFRP混合薄壁结构耐撞性能可靠性优化设计[J]. 工程设计学报, 2022, 29(6): 720-730.
[5] 陈振, 李涛, 薛晓伟, 周阳, 敬爽, 陈言. 基于模糊综合评价法的可控震源振动器平板疲劳可靠性分析与优化[J]. 工程设计学报, 2021, 28(4): 415-425.
[6] 王艾伦, 刘乐, 刘庆亚. 基于Kriging代理模型的拉杆组合转子强度可靠性研究[J]. 工程设计学报, 2019, 26(4): 433-440.
[7] 崔国华, 崔康康, 吴海淼, 张艳伟, 刘健. 预应力钢筒混凝土管端口打磨机器人的压紧力可靠性分析[J]. 工程设计学报, 2018, 25(6): 647-654.
[8] 唐林, 许志沛, 贺田龙, 敖维川. 基于BP神经网络的转动架稳定性灵敏度分析[J]. 工程设计学报, 2018, 25(5): 576-582.
[9] 谢经伟, 黎放, 陈童, 尹东亮. 考虑使用与维修优先权的冷贮备系统可靠性模型分析[J]. 工程设计学报, 2018, 25(3): 315-320.
[10] 文瑞桥, 杨梦鸥, 刘涛, 张均富. 机器人的运动时变可靠性分析[J]. 工程设计学报, 2018, 25(1): 50-55.
[11] 陆凤仪, 赵科渊, 徐格宁, 戚其松. 基于多源信息融合及模糊故障树的小子样可靠性评估[J]. 工程设计学报, 2017, 24(6): 609-617.
[12] 张根保, 徐付伟, 冉琰, 章小刚. 机械结构相似度评价及可靠性预计研究[J]. 工程设计学报, 2017, 24(3): 264-272.
[13] 段福斌, 潘骏, 陈文华, 徐瀚辉, 杨礼康. 双筒式液压减振器阻尼力建模与灵敏度分析[J]. 工程设计学报, 2017, 24(2): 149-155.
[14] 尹东亮, 黎放, 陈童. 基于PH分布的两部件并联系统可靠性模型分析[J]. 工程设计学报, 2016, 23(2): 130-135.
[15] 杨 超,狄 鹏,陈 童. 基于区间分析的舰船装备可靠性模糊分配方法[J]. 工程设计学报, 2015, 22(5): 317-323.