Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2026, Vol. 60 Issue (1): 169-178    DOI: 10.3785/j.issn.1008-973X.2026.01.016
    
Operating mode selection model for heating unit considering capacity charge
Huhang CHEN1(),Quan LV1,*(),Zihang SU1,Junqiao ZHANG2,Zhu CHEN2,Xu HAN2
1. School of Electrical Engineering, Dalian University of Technology, Dalian 116024, China
2. Huaneng Dalian Power Plant, Dalian 116113, China
Download: HTML     PDF(1062KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Heating units can be modified to operate in multiple modes such as high backpressure, extraction-condensing, and pure condensing, which significantly enhances the operational flexibility and economic performance of thermal power plants during the heating season. To select the operating mode of each heating unit in a thermal power plant before the heating season to maximize the overall operational benefits during the heating season, the operating characteristics of heating units under different modes were analyzed. A plant-wide comprehensive benefit comparison model for the heating season considering the capacity revenue, deep peaking market revenue, fuel cost, and the cost of replacing rotors in high backpressure units was constructed, to evaluate and compare the different operating schemes of the plant. A case study of an actual thermal power plant in Northeast China was conducted, where the proposed model was applied to calculate and compare the benefits of two typical operational schemes. The results verify the effectiveness and practicality of the model, demonstrating that the high backpressure mode and the extraction-condensing mode have good complementary characteristics in operation. The selection of the optimal operational mode of heating units heavily depends on the heating load level of the thermal power plant.



Key wordsheating unit      operating mode      capacity charge      peak-shaving service      high backpressure unit     
Received: 25 December 2024      Published: 15 December 2025
CLC:  TP 393  
Corresponding Authors: Quan LV     E-mail: 17614289516@163.com;lvquan@dlut.edu.cn
Cite this article:

Huhang CHEN,Quan LV,Zihang SU,Junqiao ZHANG,Zhu CHEN,Xu HAN. Operating mode selection model for heating unit considering capacity charge. Journal of ZheJiang University (Engineering Science), 2026, 60(1): 169-178.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2026.01.016     OR     https://www.zjujournals.com/eng/Y2026/V60/I1/169


计及容量电费的供热机组运行模式选择模型

供热机组经过改造后可以在高背压、抽凝、纯凝等多种模式下运行,显著提升热电厂在供暖期的运行灵活性与经济性. 为了在供暖期来临之前选定热电厂内各台供热机组的运行模式,以最大化供暖期的整体运行效益,分析供热机组在不同模式下的运行特性,构建计及容量收益、深度调峰市场收益、燃料成本以及高背压机组更换转子成本的供暖期全厂综合收益比较模型,用于评价与比较不同的热电厂运行方案. 以我国东北地区某实际热电厂为例,应用上述模型对2种典型运行方案进行收益计算与对比分析. 算例结果验证了模型的有效性与实用性,表明高背压模式与抽凝模式在运行中具有良好的互补特性. 机组最优运行模式的选择高度依赖于热电厂的供热负荷水平.


关键词: 供热机组,  运行模式,  容量电费,  调峰服务,  高背压机组 
Fig.1 Electricity-heat relationship of high backpressure units and extraction-condensing mode
Fig.2 Schematic diagram of coordinated heating mode of high backpressure unit and extraction-condensing unit
Fig.3 Schematic diagram of deep peak-shaving capability of thermal power plant under different operating schemes
机组类型a/(t·MW?2·h?1)b/(t·MW?2·h?1)c/(t·h?1)$ \mu _{\text{B}}^j $/%
1#高背压92
1#纯凝0.000101140.2353211.397
2#抽凝0.000003650.287526.006
3#抽凝0.000042030.263068.774
4#抽凝0.000006740.285246.820
Tab.1 Economic parameters of units (fixed parameter model)
机组类型$ P_{{\text{e,max}}} /{\text{MW}}$$ P_{{\text{e,min}}}/{\text{MW}} $$ P_{{\text{h,max}}}^{}/{\text{MW}} $$ {c_{\mathrm{v}}} $$ {c_{\mathrm{m}}} $z/MW
1#高背压280700.530.04
1#纯凝350100
2#抽凝3501002000.2180.62?24.4
3#抽凝3501002000.2180.62?24.4
4#抽凝3501002200.2180.62?24.4
Tab.2 Operating parameters of units (fixed parameter model)
Fig.4 Heat load curve of 152-days heating season
Fig.5 Boundary power output of thermal power plant under different operating schemes
Fig.6 Maximum/minimum power output of thermal power plant during heating season under different operating schemes
Fig.7 Maximum power output and declared capacity of thermal power plant under different operating schemes
方案$ P_{{\text{DECL}}}^{{\text{plant}}}/{\mathrm{MW}} $
11月12月1月2月3月
α9511 1661 1781 128983
β1 3011 2721 2691 3021 333
Tab.3 Monthly declared capacity under different operating schemes
方案Rcap/万元
11月12月1月2月3月
α7819901 001865862
β1 0691 0811 0789991 169
Tab.4 Monthly capacity charges under different operating schemes
Fig.8 Minimum electrical load rate of thermal power plant under different operating schemes
方案$ P_{{\text{DDR}}}^{{\text{plant}}} /({\mathrm{MW}} \cdot {\mathrm{h}})$
1档2档3档
α35 36519 8434 911
β39 12321 6763 137
αβ–3 758–1 8331 774
Tab.5 Monthly peak-shaving electricity quantity under different operating schemes
方案机组Qunit/(104 GJ)
11月12月1月2月3月
α1#104.1100.562.5
α2#31.29.69.68.724.0
α3#20.86.46.45.816.0
α4#20.86.46.45.816.0
β1#
β2#31.254.252.735.524.0
β3#20.836.235.123.716.0
β4#20.836.235.123.716.0
Tab.6 Monthly heat supply quantity borne by each unit under different operating schemes
方案机组Φunit/(kg·GJ?1)
11月12月1月2月3月
α1#11.611.48.5
α2#17.117.017.017.017.0
α3#16.816.716.616.716.7
α4#17.417.417.417.417.4
β1#
β2#17.117.117.117.117.1
β3#16.816.816.716.816.7
β4#17.417.417.417.417.4
Tab.7 Monthly unit heat supply coal consumption rate of each unit under different operating schemes
方案Rcoal/万元
11月12月1月2月3月
α14911912183910561146
β14912596251716981146
αβ0?684?678?6420
Tab.8 Monthly heating costs under different operating schemes
Fig.9 Differences in costs and benefits of thermal power plant between two operating schemes under different heat load demands
[1]   陈国平, 梁志峰, 董昱 基于能源转型的中国特色电力市场建设的分析与思考[J]. 中国电机工程学报, 2020, 40 (2): 369- 379
CHEN Guoping, LIANG Zhifeng, DONG Yu Analysis and reflection on the marketization construction of electric power with Chinese characteristics based on energy transformation[J]. Proceedings of the CSEE, 2020, 40 (2): 369- 379
[2]   中华人民共和国国家发展和改革委员会. 关于建立煤电容量电价机制的通知[EB/OL]. (2023-11-10) [2024-12-15]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202311/t20231110_1361897.html.
[3]   中华人民共和国国家发展和改革委员会. 关于印发《热电联产管理办法》的通知[EB/OL]. (2016-04-18) [2024-12-15]. http://www.nea.gov.cn/2016-04/18/c_135289351.htm.
[4]   中华人民共和国国家发展和改革委员会. 关于印发北方地区冬季清洁取暖规划(2017-2021年)的通知[EB/OL]. (2017-12-20) [2024-12-15]. http://www.gov.cn/xinwen/2017-12/20/content_5248855.htm.
[5]   韩中合, 肖炜刚, 安国银 大型汽轮机供热改造方案研究[J]. 汽轮机技术, 2016, 58 (3): 198- 200
HAN Zhonghe, XIAO Weigang, AN Guoyin Research of heating retrofitting schemes for large steam turbine[J]. Turbine Technology, 2016, 58 (3): 198- 200
doi: 10.3969/j.issn.1001-5884.2016.03.011
[6]   戈志华, 马立群, 李亚华, 等 高背压供热汽轮机低压转子模态分析[J]. 汽轮机技术, 2019, 61 (3): 167- 170
GE Zhihua, MA Liqun, LI Yahua, et al Modal analysis of low pressure rotor of high back pressure heating turbine[J]. Turbine Technology, 2019, 61 (3): 167- 170
doi: 10.3969/j.issn.1001-5884.2019.03.002
[7]   罗华林, 林宝森, 谭宏, 等 高参数大流量供热改造汽轮机推力系统控制研究[J]. 汽轮机技术, 2022, 64 (3): 181- 182
LUO Hualin, LIN Baosen, TAN Hong, et al Research on thrust system control of steam turbine for high parameter and large flow heating transformation[J]. Turbine Technology, 2022, 64 (3): 181- 182
doi: 10.3969/j.issn.1001-5884.2022.03.006
[8]   张攀, 杨涛, 杜旭, 等 直接空冷机组高背压供热技术经济性分析[J]. 汽轮机技术, 2014, 56 (3): 209- 212
ZHANG Pan, YANG Tao, DU Xu, et al The economy analysis of the high back pressure heating technology on direct air-colled unit[J]. Turbine Technology, 2014, 56 (3): 209- 212
doi: 10.3969/j.issn.1001-5884.2014.03.014
[9]   王凤良 高背压供热改造关键技术及经济性评价探讨[J]. 汽轮机技术, 2016, 58 (2): 133- 135
WANG Fengliang The key technology and economic research for high-back pressure heat-supply transformation[J]. Turbine Technology, 2016, 58 (2): 133- 135
doi: 10.3969/j.issn.1001-5884.2016.02.016
[10]   王力, 陈永辉, 李波, 等 300 MW机组高背压供热改造方案及试验分析[J]. 汽轮机技术, 2018, 60 (5): 385- 388
WANG Li, CHEN Yonghui, LI Bo, et al Reconstruction scheme and test analysis for heating supply with high back pressure of a 300 MW unit[J]. Turbine Technology, 2018, 60 (5): 385- 388
[11]   杨海生, 古雨, 唐广通, 等 高背压-抽凝机组耦合运行优化技术对深度调峰性能影响及经济性分析[J]. 汽轮机技术, 2020, 62 (4): 305- 308
YANG Haisheng, GU Yu, TANG Guangtong, et al Effect of coupling operation optimization technology of high back pressure-condensing cogeneration unit on peak regulation performance and economic analysis[J]. Turbine Technology, 2020, 62 (4): 305- 308
doi: 10.3969/j.issn.1001-5884.2020.04.017
[12]   刘学, 胡刚刚, 李健, 等 高背压双抽热电联产机组联合运行特性及负荷分配[J]. 中国电力, 2022, 55 (10): 219- 228
LIU Xue, HU Ganggang, LI Jian, et al Operation characteristics and load distribution of CHP units with extraction-condensate and extraction-high back pressure mode[J]. Electric Power, 2022, 55 (10): 219- 228
doi: 10.11930/j.issn.1004-9649.202203078
[13]   陈然璟, 曹越, 司风琪 基于PC-GWO的高背压抽凝热电联供系统负荷优化研究[J]. 热能动力工程, 2023, 38 (2): 18- 25
CHEN Ranjing, CAO Yue, SI Fengqi Research on load optimization of high backpressure extraction CHP units based on PC-GWO[J]. Journal of Engineering for Thermal Energy and Power, 2023, 38 (2): 18- 25
[14]   梁占伟, 张磊, 徐亚涛, 等 双机联调抽汽-高背压联合供热㶲分析与优化[J]. 动力工程学报, 2020, 40 (3): 247- 255
LIANG Zhanwei, ZHANG Lei, XU Yatao, et al Exergy analysis and optimization of steam extraction-high back pressure combined heating for dual cogeneration units[J]. Journal of Chinese Society of Power Engineering, 2020, 40 (3): 247- 255
[15]   戈志华, 孙诗梦, 万燕, 等 大型汽轮机组高背压供热改造适用性分析[J]. 中国电机工程学报, 2017, 37 (11): 3216- 3222
GE Zhihua, SUN Shimeng, WAN Yan, et al Applicability analysis of high back-pressure heating retrofit for large-scale steam turbine unit[J]. Proceedings of the CSEE, 2017, 37 (11): 3216- 3222
[16]   黄震洋, 周建新, 曹越 高背压抽凝供热机组不同供热期运行背压调整优化研究[J]. 热能动力工程, 2024, 39 (2): 126- 134
HUANG Zhenyang, ZHOU Jianxin, CAO Yue Optimization study on the adjustment of back pressure for the operation of high back pressure pumped condensing heating units in different heating periods[J]. Journal of Engineering for Thermal Energy and Power, 2024, 39 (2): 126- 134
[17]   梁占伟, 杨承刚, 张磊, 等 基于单耗理论的抽汽耦合高背压供热优化[J]. 中国电力, 2019, 52 (12): 171- 178
LIANG Zhanwei, YANG Chenggang, ZHANG Lei, et al Optimization of steam extraction combined high back pressure heating based on specific consumption theory[J]. Electric Power, 2019, 52 (12): 171- 178
doi: 10.11930/j.issn.1004-9649.201911007
[18]   杨志平, 冯澎湃, 王宁玲, 等 质–量并行调节下直接空冷高背压供热机组弹性运行与优化[J]. 中国电机工程学报, 2017, 37 (19): 5655- 5664
YANG Zhiping, FENG Pengpai, WANG Ningling, et al Flexible operation and optimization of direct air-cooled high pressure heat supply power units in quality-volume regulation[J]. Proceedings of the CSEE, 2017, 37 (19): 5655- 5664
[19]   闫森, 王伟芳, 蒋浦宁 300 MW汽轮机供热改造双低压转子互换技术应用[J]. 热力透平, 2015, 44 (1): 10- 12
YAN Sen, WANG Weifang, JIANG Puning Application of double LP rotor interchangeable technology for heating improving in 300 MW steam turbines[J]. Thermal Turbine, 2015, 44 (1): 10- 12
[20]   章艳, 吕泉, 张娜, 等 计及灵活性提升的热电厂日前市场竞价策略[J]. 电力系统自动化, 2021, 45 (6): 140- 147
ZHANG Yan, LYU Quan, ZHANG Na, et al Bidding strategy of day-ahead market for combined heat and power plant considering flexibility improvement[J]. Automation of Electric Power Systems, 2021, 45 (6): 140- 147
[21]   焦晓峰, 范志强, 贾斌, 等 300 MW机组厂级供热优化调度方式及性能分析[J]. 汽轮机技术, 2023, 65 (2): 149- 153
JIAO Xiaofeng, FAN Zhiqiang, JIA Bin, et al Heating supply optimization and performance analysis with plant-level for 300 MW cogeneration unit[J]. Turbine Technology, 2023, 65 (2): 149- 153
doi: 10.3969/j.issn.1001-5884.2023.02.017
[22]   辽宁省发展和改革委员会. 省发展改革委关于建立煤电容量电价机制的通知[EB/OL]. (2024-03-11) [2024-12-15]. https://www.ln.gov.cn/web/zwgkx/lnsrmzfgb/2024n/qk/2024n_dbq/bmwj/2024041914035916362/index.shtml.
[23]   国家能源局东北监管局. 关于征求《东北电力辅助服务市场运营规则(征求意见稿)》意见的公告[EB/OL]. (2025-03-31). https://dbj.nea.gov.cn/hdhy/dczj/202504/t20250401_278917.html.
[24]   石志云, 陈海平, 王忠平, 等 热电联产机组热电成本分摊理论综述[J]. 节能, 2012, 31 (8): 12- 16
SHI Zhiyun, CHEN Haiping, WANG Zhongping, et al Summary of thermoelectric cost-sharing theory of cogeneration units[J]. Energy Conservation, 2012, 31 (8): 12- 16
doi: 10.3969/j.issn.1004-7948.2012.08.003
[1] Jun HE,Ya-sheng ZHANG,Can-bin YIN. Operating modes identification of spaceborne SAR based on deep learning[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1676-1684.