Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (11): 2361-2369    DOI: 10.3785/j.issn.1008-973X.2025.11.015
    
Mechanical property of geopolymer solidified aeolian sand under dry-wet-freeze-thaw cycle
Lingkai ZHANG1,2(),Wei JIA1,2
1. College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China
2. Xinjiang Key Laboratory of Water Conservancy Engineering Safety and Water Disaster Prevention, Urumqi 830052, China
Download: HTML     PDF(5114KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Direct shear, compression, penetration and scanning electron microscopy (SEM) tests were conducted under dry-wet-freeze-thaw cycles in order to analyze the degradation law of mechanical property of geopolymer solidified aeolian sand under dry-wet-freeze-thaw cycles. The cohesion and internal friction angle show a decreasing trend of quadratic function with the increase of the number of cycles. The deterioration of shear strength parameter is characterized by an increase in the detachment area ratio and the pore area ratio. The compression index and the rebound index show a quadratic function trend with the increase of the number of cycles. The loss rate of compression characteristic parameter is highly correlated with the detachment area ratio and pore area ratio. The permeability coefficient shows an increasing trend with the increase of the number of cycles. The process can be divided into three stages: slow, rapid and stable. The increase of pore area ratio promotes the increase of permeability coefficient, and the increase of detachment area ratio slows down the increase of permeability coefficient.



Key wordsdry-wet-freeze-thaw cycle      solidified aeolian sand      shear property      compression characteristic      permeability characteristic     
Received: 05 November 2024      Published: 30 October 2025
CLC:  TU 441  
Fund:  2022年自治区重点研发任务专项资助项目(2022B03024-3);新疆维吾尔自治区杰出青年科学基金资助项目(2022D01E45);新疆维吾尔自治区中央引导地方科技发展资金资助项目(ZYYD2024CG20).
Cite this article:

Lingkai ZHANG,Wei JIA. Mechanical property of geopolymer solidified aeolian sand under dry-wet-freeze-thaw cycle. Journal of ZheJiang University (Engineering Science), 2025, 59(11): 2361-2369.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.11.015     OR     https://www.zjujournals.com/eng/Y2025/V59/I11/2361


干湿-冻融循环下地聚物固化风积沙力学特性

为了探讨干湿-冻融循环条件下地聚物固化风积沙的力学特性劣化规律,开展干湿-冻融循环条件下的直剪、压缩、渗透和扫描电镜(SEM)试验. 研究表明,随着循环次数的增加,黏聚力、内摩擦角均呈二次函数的减小趋势. 抗剪强度参数劣化在微观的表征为脱离体面积比与孔隙面积比的增加. 随着循环次数的增加,压缩指数、回弹指数均呈二次函数的变化趋势. 压缩特性参数的损失率与脱离体面积比、孔隙面积比的相关性较高. 随着循环次数的增加,渗透系数呈增加的趋势,过程可以分为缓慢、迅速、稳定3个阶段. 孔隙面积比的增加促进了渗透系数的增加趋势,脱离体面积比的增加减缓了渗透系数的增加趋势.


关键词: 干湿-冻融循环,  固化风积沙,  剪切特性,  压缩特性,  渗透特性 
Fig.1 Aeolian sand, mineral powder, fly ash particle gradation curve
Fig.2 Distribution of main component of fly ash and slag powder
Fig.3 Shear characteristic curve of solidified aeolian sand under different cycle
Fig.4 Microscopic image of solidified aeolian sand under different cycle
NA/%R/%QH
14.587.230.8351.53
316.7415.690.8231.55
521.4517.220.7731.47
722.1319.680.7941.48
928.3519.910.7881.41
Tab.1 Microscopic parameter of solidified aeolian sand under different cycle
Fig.5 Relationship between single microscopic parameter of solidified aeolian sand and loss rate of shear strength parameter under different cycle
Fig.6 Two-factor microscopic parameter of solidified aeolian sand and change surface of shear strength parameter loss rate under different cycle
Fig.7 Change curve of compression characteristic of solidified aeolian sand under different cycle
Fig.8 Microscopic image of solidified aeolian sand after compression test under different cycle
NA/%R/%QH
16.294.420.8771.45
39.1210.710.8371.47
514.5811.030.8221.41
718.6312.380.8341.40
920.7112.940.8271.34
Tab.2 Microscopic parameter of solidified aeolian sand after compression test under different cycle
Fig.9 Relationship between single microscopic parameter of solidified aeolian sand and loss rate of compression characteristic parameter under different cycle
Fig.10 Change surface of microscopic parameter and compression characteristic parameter loss rate of solidified aeolian sand under different cycle
Fig.11 Variation curve of permeability characteristic of solidified aeolian sand under different cycle
Fig.12 Microscopic image of solidified aeolian sand after infiltration test under different cycle
NA/%R/%QH
13.582.450.861.58
36.744.610.851.60
59.4513.780.801.53
713.1316.220.821.55
925.3516.860.791.45
Tab.3 Microscopic parameter of solidified aeolian sand after infiltration test under different cycle
Fig.13 Curve (surface) of microscopic parameter and permeability coefficient loss rate of solidified aeolian sand under different cycle
[1]   FANG G H, LI Z, CHEN Y N, et al Projecting the impact of climate change on runoff in the Tarim River simulated by the soil and water assessment tool glacier model[J]. Remote Sensing, 2023, 15 (16): 3922
doi: 10.3390/rs15163922
[2]   贾威, 张凌凯, 丁旭升 塔里木河干流沿岸风积沙物理力学特性及其影响机制[J]. 重庆大学学报, 2025, 48 (6): 34- 44
JIA Wei, ZHANG Lingkai, DING Xusheng Physical and mechanical properties of aeolian sand along the mainstream of the Tarim River and its influencing mechanism[J]. Journal of Chongqing University, 2025, 48 (6): 34- 44
[3]   ZENG Z X, KONG L W Wetting-drying-freezing-thawing cycle effect on the hydro-mechanical behaviour of Yanji swelling mudstone[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15 (10): 2746- 2756
doi: 10.1016/j.jrmge.2023.05.004
[4]   张建新, 马昌虎, 郎瑞卿, 等 不同冻融模式下淤泥质土力学及微观结构特性研究[J]. 岩石力学与工程学报, 2023, 42 (Suppl.1): 3801- 3811
ZHANG Jianxin, MA Changhu, LANG Ruiqing, et al Study on mechanical and microstructure characteristics of mucky soil under different freeze-thaw modes[J]. Journal of Rock Mechanics and Engineering, 2023, 42 (Suppl.1): 3801- 3811
[5]   YE W J, ZHOU Z H, BAI Y, et al Multiscale study of the strength deterioration and microstructure changes in loess during dry-wet and freeze-thaw cycles[J]. Journal of the Chinese Institute of Engineers, 2024, 47 (3): 283- 292
doi: 10.1080/02533839.2024.2308237
[6]   阮波, 沈一凡, 张向京, 等 冻融循环下纤维水泥改良风积沙动力特性研究[J]. 铁道科学与工程学报, 2025, 22 (4): 1614- 1621
RUAN Bo, SHEN Yifan, ZHANG Xiangjing, et al Study on the dynamic characteristics of fiber cement modified aeolian sand under freeze-thaw cycles[J]. Journal of Railway Science and Engineering, 2025, 22 (4): 1614- 1621
[7]   鲍硕超, 刘东跃, 上官云龙, 等 冻融循环下水泥改良风积沙力学性能研究[J]. 吉林建筑大学学报, 2023, 40 (3): 1- 6
BAO Shuochao, LIU Dongyue, SHANGGUAN Yunlong, et al Study on mechanical properties of cement-improved aeolian sand under freeze-thaw cycles[J]. Journal of Jilin Jianzhu University, 2023, 40 (3): 1- 6
[8]   崔潮, 李渊, 党颖泽, 等 碱-矿渣-偏高岭土基地聚物与骨料的界面粘结机理[J]. 材料导报, 2025, 39 (1): 190- 197
CUI Chao, LI Yuan, DANG Yingze, et al Interfacial bonding mechanism between alkali-slag-metakaolin based geopolymer and aggregate[J]. Materials Guide, 2025, 39 (1): 190- 197
[9]   JIA H M, WANG J, SUN C, et al Stabilization/solidification of nickel-containing electroplating sludge by sustainable geopolymer: Mechanism and applicability[J]. Journal of Environmental Chemical Engineering, 2025, 13 (2): 115717
doi: 10.1016/j.jece.2025.115717
[10]   黎梦珂, 包申旭, 张一敏, 等. 燃煤渣基地聚物的制备及热活化效果[EB/OL]. [2024-06-20]. https://link.cnki.net/urlid/50.1218.TU.20231018.0902.003.
LI Mengke, BAO Shenxu, ZHANG Yimin, et al. Preparation and thermal activation effect of coal-fired slag based geopolymer [EB/OL]. [2024-06-20]. https://link.cnki.net/urlid/50.1218.TU.20231018.0902.003.
[11]   王立权, 李红康, 刘彦彦, 等 地聚合物固化风积沙三轴试验数值模拟[J]. 路基工程, 2023, (6): 115- 121
WANG Liquan, LI Hongkang, LIU Yanyan, et al Numerical simulation of triaxial test of geopolymer solidified aeolian sand[J]. Subgrade Engineering, 2023, (6): 115- 121
[12]   SHI Y G, TANG B P, ZHANG X D, et al Experimental study on fabrication of environment-friendly concrete by solidifying aeolian sand and natural gravel with fly ash-based geopolymer[J]. Buildings, 2024, 14 (11): 3649
doi: 10.3390/buildings14113649
[13]   吴冠雄, 董城 干湿循环对地聚物固化淤泥动力特性及微观结构影响[J]. 公路工程, 2024, 49 (3): 170- 177
WU Guanxiong, DONG Cheng Effects of wetting-drying cycles on the dynamic characteristics and microstructure of geopolymer solidified sludge[J]. Highway Engineering, 2024, 49 (3): 170- 177
[14]   郭强, 张晓雷, 史晨曦, 等 赤泥-矿渣基地聚物固化黄土冻融后力学特性研究[J]. 硅酸盐通报, 2024, 43 (4): 1482- 1489
GUO Qiang, ZHANG Xiaolei, SHI Chenxi, et al Study on mechanical properties of red mud-slag based geopolymer solidified loess after freeze-thaw[J]. Silicate Bulletin, 2024, 43 (4): 1482- 1489
[15]   姜屏, 陈业文, 陈先华, 等 改性石灰土在干湿和冻融循环下的无侧限抗压性能[J]. 吉林大学学报: 工学版, 2023, 53 (6): 1809- 1818
JIANG Ping, CHEN Yewen, CHEN Xianhua, et al The unconfined compressive properties of modified lime soil under dry-wet and freeze-thaw cycles[J]. Journal of Jilin University: Engineering Edition, 2023, 53 (6): 1809- 1818
[16]   李治斌, 苏安双, 张晓东, 等 冻融循环作用下东北盐渍土地区路基填料改良试验研究[J]. 森林工程, 2023, 39 (2): 139- 147
LI Zhibin, SU Anshuang, ZHANG Xiaodong, et al Experimental study on improvement of subgrade filler in saline soil area of Northeast China under freeze-thaw cycle[J]. Forest Engineering, 2023, 39 (2): 139- 147
[17]   刘宽, 叶万军, 高海军, 等 干湿环境下膨胀土力学性能劣化的多尺度效应[J]. 岩石力学与工程学报, 2020, 39 (10): 2148- 2159
LIU Kuan, YE Wanjun, GAO Haijun, et al Multi-scale effect of mechanical properties deterioration of expansive soil under dry and wet environment[J]. Journal of Rock Mechanics and Engineering, 2020, 39 (10): 2148- 2159
[18]   骆赵刚, 汪时机, 杨振北 膨胀土湿干胀缩裂隙演化及其定量分析[J]. 岩土力学, 2020, 41 (7): 2313- 2323
LUO Zhaogang, WANG Shiji, YANG Zhenbei Evolution and quantitative analysis of wet-dry expansion-shrinkage cracks in expansive soil[J]. Geotechnical Mechanics, 2020, 41 (7): 2313- 2323
[19]   田威, 云伟, 贺文昊, 等. 矿渣基地聚物固化黄土抗压强度及固化机制研究[EB/OL]. [2024-06-20]. https://doi.org/10.15951/j.tmgcxb.24040258.
[20]   张凌凯, 崔子晏 干湿-冻融循环条件下膨胀土的压缩及渗透特性变化规律[J]. 岩土力学, 2023, 44 (3): 728- 740
ZHANG Lingkai, CUI Ziyan Changes of compression and permeability characteristics of expansive soil under dry-wet-freeze-thaw cycles[J]. Geotechnical Mechanics, 2023, 44 (3): 728- 740
[21]   吴仪, 党发宁, NIMBALKAR S, 等 不同循环模式下透水混凝土性能演变规律及损伤机制[J]. 建筑材料学报, 2025, 28 (1): 9- 18
WU Yi, DANG Faning, NIMBALKAR S, et al The performance evolution and damage mechanism of pervious concrete under different cyclic modes[J]. Journal of Building Materials, 2025, 28 (1): 9- 18
doi: 10.3969/j.issn.1007-9629.2025.01.002
[22]   王瑶, 杨忠平, 周杨, 等 长期冻融循环下固化铅锌镉复合重金属污染土抗剪强度及浸出特征研究[J]. 中国环境科学, 2022, 42 (7): 3276- 3284
WANG Yao, YANG Zhongping, ZHOU Yang, et al Study on shear strength and leaching characteristics of solidified lead-zinc-cadmium composite heavy metal contaminated soil under long-term freeze-thaw cycles[J]. China Environmental Science, 2022, 42 (7): 3276- 3284
[23]   刘科, 刘霖, 张永鹏 干湿/冻融循环作用下改良隔离墙的渗透性及孔隙结构[J]. 建筑材料学报, 2022, 25 (5): 545- 550
LIU Ke, LIU Lin, ZHANG Yongpeng Permeability and pore structure of improved isolation wall under dry-wet/ freeze-thaw cycles[J]. Journal of Building Materials, 2022, 25 (5): 545- 550
[1] Wenbin LIN,Xianfeng LIU,Yupeng GAO,Shenggen CAO,Xianghang CHEN,Xiaohui CHENG. Experimental study on weatherability of MICP-reinforced sea sand under seawater environment[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1746-1754.
[2] Yi-long LI,Zhen GUO,Qiang XU,Yu-jie LI. Experimental research on wet-dry cycle of MICP cemented calcareous sand in seawater environment[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1740-1749.
[3] Shao-xiang CHEN,Zhi-gang CAO,Xing-chi YE,Yuan-qiang CAI,Qi ZHANG. Hypoplastic model for road base coarse-grained materials accounting for temperature effect[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 938-946, 976.
[4] Xin-shan ZHUANG,Han-wen ZHAO,Jun-xiang WANG,Yong-jie HUANG. Experimental study of dynamic elastic modulus and damping ratio of expansive soil in Hefei[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 759-766.