Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (10): 2078-2085    DOI: 10.3785/j.issn.1008-973X.2025.10.008
    
Snowy scene integration construction method in autonomous driving sample library
Zhaolong DONG1,2(),He HUANG1,2,*(),Zhanyi LI1,2,Lan YANG3,Huifeng WANG2
1. School of Electronics and Control Engineering, Chang’an University, Xi’an 710064, China
2. Key Laboratory of Intelligent Expressway Information Fusion and Control, Chang’an University, Xi’an 710064, China
3. School of Information Engineering, Chang’an University, Xi’an 710064, China
Download: HTML     PDF(5769KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A snow scene construction algorithm based on perception estimation was proposed to address the problems of difficulty in collecting data from existing snow scene sample libraries and limited sample sizes during the training of autonomous driving perception performance. The snow scene was divided into two models: snow-covered model and snow-line model, and a snow-covered plane construction algorithm based on spatial perception was proposed to analyze the subtle gradient changes in the image and estimate the preliminary snow area. The preliminary snow areas were refined using connected domain analysis, and the areas were fused with the original image to obtain snow-covered scene images. A snow scene construction algorithm based on a random snow-line model was proposed to generate different motion directions for snowflakes. Snow-covered model and snow-line model were integrated, and various basic snow-line forms were utilized to construct snow scenes. Experimental results from the comparison of multi-frame traffic video data show that, in the snowy scenes constructed using the snowy scene fusion method, as the amount of snow increases, both the interference information and the details of the image are significantly enhanced, subjectively approaching the actual snow scene. Moreover, objective evaluation metrics for snow image quality decrease with the increase of snow cover and snow-line density.



Key wordsautonomous driving      snowy scene sample      snow-covered scene      snow-line model      image quality     
Received: 14 October 2024      Published: 27 October 2025
CLC:  TP 393  
Fund:  国家自然科学基金资助项目(52472446);国家重点研发计划项目(2021YFB2501200);陕西省留学人员科技活动择优资助项目(2023001);中央高校基本科研业务费资助项目(300102325501).
Corresponding Authors: He HUANG     E-mail: 2023132006@chd.edu.cn;huanghe@chd.edu.cn
Cite this article:

Zhaolong DONG,He HUANG,Zhanyi LI,Lan YANG,Huifeng WANG. Snowy scene integration construction method in autonomous driving sample library. Journal of ZheJiang University (Engineering Science), 2025, 59(10): 2078-2085.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.10.008     OR     https://www.zjujournals.com/eng/Y2025/V59/I10/2078


自动驾驶样本库中雪天场景融合构建方法

自动驾驶感知性能训练所需的雪天场景样本库数据收集难度大,样本数量较少,为此提出基于感知估计的雪天场景构建算法. 将雪天场景划分为积雪模型和雪线模型,提出基于空间感知的积雪平面构建算法,分析图像细微的梯度变化,估计初步积雪区域. 使用连通域分析方法细化初步积雪区域,将积雪区域与原图融合,获得积雪场景图像. 提出基于随机雪线模型的雪天场景构建算法,生成不同运动方向的雪花. 将积雪模型和雪线模型融合,利用多种基础雪线形态构建雪天场景. 多帧交通视频数据对比实验结果表明,在使用雪天场景融合方法构建的雪天场景中,随着雪量增加,图像的干扰信息和细节都明显增强,主观上接近实际雪天场景;随积雪和雪线密度的增加,加雪图像质量客观评价指标不断降低.


关键词: 自动驾驶,  雪天场景样本,  积雪场景,  雪线模型,  图像质量 
Fig.1 Pixel fluctuations in sunny scene images
Fig.2 Image comparison before and after removing influence of sky region
Fig.3 Image refinement process for snow-covered areas and image fusion
Fig.4 Principle of white reflection effect
Fig.5 Schematic diagram of snow line filtering
Fig.6 Outcome image of snow-line density
Fig.7 Flowchart of snow scene construction algorithm based on perception estimation
Fig.8 Visualization results of snow addition experiment on traffic video key frames
Fig.9 Visualization results of snow-covered scene experiment on traffic video key frames
Fig.10 Algorithm performance evaluation curves for two experimental scenarios under different snow-line density conditions (contains four traffic video key frames)
δs加雪实验积雪实验
EAGFADEPSNRSSIMFCEAGFADEPSNRSSIMFC
1014.4077.7190.63133.7190.9710.99413.10019.3650.41928.8810.5070.198
2014.4997.6840.65928.5350.9201.01013.13819.1370.42228.5890.4890.201
3014.3887.5780.71625.7140.8721.03712.97518.7450.44028.3250.4710.207
4014.1567.4600.80024.4570.8231.06112.71818.2160.46828.0790.4560.214
5013.8167.2030.89124.2380.7761.11213.41417.6340.49127.7950.4370.221
Tab.1 Algorithm performance evaluation results for two experimental scenarios under different snow-line density conditions
Fig.11 Visualization results of two experiments under different snow-line density conditions (using other dataset image)
δs加雪实验积雪实验
EAGFADEPSNRSSIMFCEAGFADEPSNRSSIMFC
1012.0642.7641.33933.9340.9640.85010.24115.6390.82227.0920.4010.048
2012.1802.8921.34133.0210.9280.87310.32715.5890.84526.9960.3810.048
3012.2932.9461.35228.7520.9030.88210.26115.0960.87526.6430.3580.049
4012.2913.0971.35425.7530.8520.89012.29114.9250.89826.4320.3530.049
5012.1903.2331.42724.1520.7710.90112.19014.5770.92826.1250.3340.049
Tab.2 Algorithm performance evaluation results for two experiments under different snow-line density conditions (using other dataset image)
[1]   KARAVARSAMIS S, GKIKA I, GKITSAS V, et al A survey of deep learning-based image restoration methods for enhancing situational awareness at disaster sites: the cases of rain, snow and haze[J]. Sensors, 2022, 22 (13): 4707- 4751
[2]   LIU Y F, JAW D W, HUANG S C, et al DesnowNet: context-aware deep network for snow removal[J]. IEEE Transactions on Image Processing, 2018, 27 (6): 3064- 3073
doi: 10.1109/TIP.2018.2806202
[3]   CHEN W T, FANG H Y, DING J J, et al. JSTASR: joint size and transparency-aware snow removal algorithm based on modified partial convolution and veiling effect removal [C]// Computer Vision – ECCV 2020. [S.l.]: Springer, 2020: 754–770.
[4]   LI B, REN W, FU D, et al Benchmarking single-image dehazing and beyond[J]. IEEE Transactions on Image Processing, 2019, 28 (1): 492- 505
doi: 10.1109/TIP.2018.2867951
[5]   CHEN W T, FANG H Y, HSIEH C L, et al. All snow removed: single image desnowing algorithm using hierarchical dual-tree complex wavelet representation and contradict channel loss [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 4176–4185.
[6]   CHEN H, REN J, GU J, et al. Snow removal in video: a new dataset and a novel method [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 13165–13176.
[7]   ZHANG K, LI R, YU Y, et al Deep dense multi-scale network for snow removal using semantic and depth priors[J]. IEEE Transactions on Image Processing, 2021, 30: 7419- 7431
doi: 10.1109/TIP.2021.3104166
[8]   GEIGER A, LENZ P, STILLER C, et al Vision meets robotics: the KITTI dataset[J]. International Journal of Robotics Research, 2013, 32 (11): 1231- 1237
doi: 10.1177/0278364913491297
[9]   CORDTS M, OMRAN M, RAMOS S, et al. The Cityscapes dataset for semantic urban scene understanding [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 3213–3223.
[10]   JANOSOVITS J. Cityscapes TL++: semantic traffic light annotations for the Cityscapes dataset [C]// Proceedings of the International Conference on Robotics and Automation. Philadelphia: IEEE, 2022: 2569–2575.
[11]   HAO J, JIANG M, HUANG Y, et al. Scatter inpainting algorithm for rain or snow removal in a single image [C]// Proceedings of the IEEE 4th International Conference on Computer and Communications. Chengdu: IEEE, 2018: 1700–1704.
[12]   黄鹤, 李文龙, 吴琨, 等 动态自适应特征融合的MFOPA跟踪器[J]. 电子学报, 2023, 51 (5): 1350- 1358
HUANG He, LI Wenlong, WU Kun, et al MFOPA tracker with dynamic adaptive feature fusion[J]. Acta Electronica Sinica, 2023, 51 (5): 1350- 1358
[13]   HAO Z, YOU S, LI Y, et al. Learning from synthetic photorealistic raindrop for single image raindrop removal [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision Workshop. Seoul: IEEE, 2019: 4340–4349.
[14]   黄鹤, 李战一, 胡凯益, 等 融合大气光值-图估计的无人机航拍图像去雾[J]. 哈尔滨工业大学学报, 2023, 55 (5): 88- 97
HUANG He, LI Zhanyi, HU Kaiyi, et al UAV aerial image dehazing by fusion of atmospheric light value and graph estimation[J]. Journal of Harbin Institute of Technology, 2023, 55 (5): 88- 97
doi: 10.11918/202111001
[15]   HUANG H, LI Z, NIU M, et al A sea fog image defogging method based on the improved convex optimization model[J]. Journal of Marine Science and Engineering, 2023, 11 (9): 1775
doi: 10.3390/jmse11091775
[16]   BOVIK A C Referenceless prediction of perceptual fog density and perceptual image defogging[J]. IEEE Transactions on Image Processing, 2015, 24 (11): 3888- 3901
doi: 10.1109/TIP.2015.2456502
[17]   WANG T, YANG X, XU K, et al. Spatial attentive single-image deraining with a high quality real rain dataset [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 12262–12271.
[18]   WANG Z, BOVIK A C, SHEIKH H R, et al Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13 (4): 600- 612
doi: 10.1109/TIP.2003.819861
[19]   黄鹤, 胡凯益, 宋京, 等 雾霾线求解透射率的二次优化方法[J]. 西安交通大学学报, 2021, 55 (8): 130- 138
HUANG He, HU Kaiyi, SONG Jing, et al A twice optimization method for solving transmittance with haze-lines[J]. Journal of Xi’an Jiaotong University, 2021, 55 (8): 130- 138
[20]   黄莺, 胡凯益, 李战一, 等 含明亮区域的无人机遥感定位图像去雾方法[J]. 火力与指挥控制, 2024, 49 (5): 130- 136
HUANG Ying, HU Kaiyi, LI Zhanyi, et al Dehazing method for the remote sensing and positioning image of UAV with bright area[J]. Fire Control and Command Control, 2024, 49 (5): 130- 136
doi: 10.3969/j.issn.1002-0640.2024.05.018
[1] Wenqiang CHEN,Dongdan WANG,Wenying ZHU,Yongjie WANG,Tao WANG. Vehicle multimodal trajectory prediction model based on spatio-temporal graph attention network[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 443-450.
[2] Dengfeng LIU,Wenjing GUO,Shihai CHEN. Content-guided attention-based lane detection network[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 451-459.
[3] Ming-kun FENG,Xiang SHI. Image quality assessment with deep pooling of visual feature[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 512-521.
[4] WANG Xiang, DING Yong. Full reference image quality assessment based on Gabor filter[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(3): 422-430.
[5] LOU Bin, CHEN Hai-Bin, DIAO Wu-Feng, et al. No-reference image quality assessment based on statistical model of natural image[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(2): 248-252.
[6] LOU Bin, CHEN Hai-Bin, DIAO Wu-Feng, et al. Structural similarity image quality assessment based on distortion model[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(5): 864-868.