Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (10): 2067-2077    DOI: 10.3785/j.issn.1008-973X.2025.10.007
    
Two-stage linguistic FMEA method for risk evaluation within complex product development process
Furong RUAN1(),Nanping FENG1,*(),Ting HUANG1,2,Shanlin YANG1,2
1. School of Management, Hefei University of Technology, Hefei 230009, China
2. Key Laboratory of Process Optimization and Intelligent Decision Making of Ministry of Education, Hefei 230009, China
Download: HTML     PDF(742KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A linguistic failure mode and effects analysis (FMEA) method for risk evaluation based on personalized individual semantics was proposed, as the existing FMEA method has deficiencies in linguistic information expression, linguistic modeling, and factor assignment when assessing risk problems in complex situations. A group of evaluation experts used a distributed linguistic preference relation to evaluate failure patterns for each risk factor, while another group also used the distributed linguistic preference relation to evaluate the relative importance of evaluation experts and risk factors. The obtained linguistic preference relation was converted into a corresponding numerical preference relationship through the numerical scale model. A first-stage personalized individual semantic model was constructed to obtain the weight values of risk factors and evaluation experts, and a second-stage personalized individual semantic model was further constructed. Based on the solution results of the two-stage personalized individual semantic model, the final score of the failure mode was calculated, and the prioritization was completed. The risk assessment problems in the development process of a certain aero engine were selected for verification, and the results showed the feasibility and effectiveness of the proposed linguistic FMEA method. Experimental comparison with the uniformly distributed method shows that the personalized individual semantics obtained by the proposed method yield highly consistent risk-assessment outcomes, supporting reliability and accuracy in complex product development.



Key wordsrisk assessment      failure mode and effect analysis      distributed linguistic preference relation      personalized individual semantics      complex product development     
Received: 10 September 2024      Published: 27 October 2025
CLC:  C 931  
Fund:  国家社会科学基金资助项目(22BGL034).
Corresponding Authors: Nanping FENG     E-mail: lotus087@163.com;fengnp@hfut.edu.cn
Cite this article:

Furong RUAN,Nanping FENG,Ting HUANG,Shanlin YANG. Two-stage linguistic FMEA method for risk evaluation within complex product development process. Journal of ZheJiang University (Engineering Science), 2025, 59(10): 2067-2077.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.10.007     OR     https://www.zjujournals.com/eng/Y2025/V59/I10/2067


面向复杂产品研制过程风险评估的两阶段语言型FMEA方法

失效模式与影响分析(FMEA)方法在语言信息表达、语言建模、因子赋权上无法完全适应复杂情境下的风险评估活动,为此提出基于个性化语义的语言型FMEA风险评估方法. 一组专家采用分布式语言偏好关系对风险因子和评价专家的重要性进行评价,另一组专家采用分布式语言偏好关系对风险模式进行评价,利用数值刻度模型将语言评价结果转化为相应的数值偏好关系. 构建第一阶段的个性化语义模型,得到风险因素和评价专家的权重值,基于权重值构建第二阶段的个性化语义模型,算出失效模式的最终得分并完成优先级排序. 选取某型航空发动机研制过程中的风险评估问题,验证所提语言型FMEA方法的可行性与有效性. 实验结果表明,相比均匀分布方法,所提方法得到的个性化语义在获得高一致性水平风险评估结果方面具有优越性,有助于提升复杂实践背景中风险评估结果的可靠性与准确性.


关键词: 风险评估,  失效模式与影响分析,  分布式语言偏好关系,  个性化语义,  复杂产品开发 
Fig.1 Framework of linguistic FMEA method for risk evaluation based on personalized individual semantics
piL1L2L3
p1非常低非常轻微非常不可以
p2轻微不可以
p3较低较轻微较不可以
p4中等中等中等
p5较高较高较可以
p6可以
p7非常高非常高非常可以
Tab.1 Linguistic evaluation terminology set for failure modes
piLeLr
p1非常不重要非常不重要
p2不重要不重要
p3中等较不重要
p4重要中等
p5非常重要较重要
p6重要
p7非常重要
Tab.2 Linguistic evaluation terminology sets for importance of experts and risk factors
RFiEX1EX2EX3EX4
RF10.81910.84540.90060.8622
RF20.85900.87730.80670.8307
RF30.84370.84400.85740.7917
加权一致性:0.8434
Tab.3 Optimal consistency on linguistic evaluation of risk types by domain experts
RFipiEX1EX2EX3EX4
RF1p1
p2
p3
p4
p5
p6
p7
0.0000
0.3631
0.3928
0.4999
0.6072
0.6370
0.9999
0.0000
0.3596
0.4573
0.5001
0.5428
0.6405
0.9999
0.0000
0.3725
0.4811
0.4999
0.5188
0.6275
0.9999
0.0000
0.3741
0.4684
0.5000
0.5317
0.6259
0.9999
RF2p1
p2
p3
p4
p5
p6
p7
0.0000
0.3277
0.4191
0.5000
0.5809
0.6724
0.9999
0.0000
0.3217
0.3735
0.5000
0.6265
0.6784
0.9999
0.0000
0.3675
0.4631
0.4999
0.5369
0.6326
0.9999
0.0000
0.3687
0.4644
0.5001
0.5357
0.6313
0.9999
RF3p1
p2
p3
p4
p5
p6
p7
0.0000
0.3736
0.4619
0.5001
0.5381
0.6264
0.9999
0.0000
0.2980
0.4483
0.4999
0.5517
0.7021
0.9999
0.0000
0.3738
0.4702
0.4999
0.5298
0.6262
0.9999
0.0000
0.2475
0.4073
0.5001
0.5928
0.7525
0.9999
Tab.4 Personalized semantic solutions under optimal consistency
RFiEX1EX2EX3EX4
RF10.76890.79780.76780.8022
RF20.81560.82000.76890.7722
RF30.75780.80220.79670.7622
加权一致性:0.7853
Tab.5 Consistency level on linguistic evaluation of risk types under uniform distribution
Fig.2 Risk type score in development process of certain aero engine
方法信息表达形式信息处理方法权重的确定方法
直接评价间接评价直接量化考虑语义主观赋权客观赋权综合赋权
Liu等[13]区间二型模糊集
王睿等[15]直觉乘法偏好关系专家评估+理想解模型法(风险因子)
Wang等[40]三角模糊数
Huang等[41]比例犹豫模糊语言集最好最坏法(风险因子)
Zhang等[20]分布式语言偏好信息
Huang等[42]语言Z数最小方差法(FMEA成员);优劣解距离法(风险因子)
赵翼翔等[43]直觉模糊数层次分析法+数据本身(风险因子)
王济干等[44]语言分布评价熵权法(风险因子)
Salah等[45]绝对数值评价
Song等[46]双向编码器表征法模型+向量空间模型熵权法(风险因子)
Liu等[47]模糊语言集专家间关系+风险评估信息(FMEA成员)
本研究分布式语言偏好信息专家评估+一致性最优个性化语义模型(FMEA成员+风险因子)
Tab.6 Comparison of linguistic FMEA methods for risk evaluation
[1]   HOBDAY M The project-based organisation: an ideal form for managing complex products and systems?[J]. Research Policy, 2000, 29 (7/8): 871- 893
[2]   杨善林, 等. 复杂产品开发工程管理理论与方法[M]. 北京: 科学出版社, 2012.
[3]   PENG H, FENG Q, COIT D W Reliability and maintenance modeling for systems subject to multiple dependent competing failure processes[J]. IIE Transactions, 2010, 43 (1): 12- 22
doi: 10.1080/0740817X.2010.491502
[4]   FORGHANI-ELAHABAD M, KAGAN N Reliability evaluation of a stochastic-flow network in terms of minimal paths with budget constraint[J]. IISE Transactions, 2019, 51 (5): 547- 558
doi: 10.1080/24725854.2018.1504358
[5]   GUERRERO H H, BRADLEY J R Failure modes and effects analysis: an evaluation of group versus individual performance[J]. Production and Operations Management, 2013, 22 (6): 1524- 1539
doi: 10.1111/j.1937-5956.2012.01363.x
[6]   PARI G, KUMAR S, SHARMA V Reliability improvement of electronics standby display system of modern aircraft[J]. International Journal of Quality and Reliability Management, 2008, 25 (9): 955- 967
[7]   ZHANG Y, ZHU H, GREENWOOD S, et al. Quality modelling for web-based information systems [C]// Proceedings Eighth IEEE Workshop on Future Trends of Distributed Computing Systems. Bologna: IEEE, 2001: 41–47.
[8]   SARDAIN P, MAISONNIER D, DI PACE L, et al The European power plant conceptual study: helium-cooled lithium–lead reactor concept[J]. Fusion Engineering and Design, 2006, 81 (23/24): 2673- 2678
[9]   APKON M, LEONARD J, PROBST L, et al Design of a safer approach to intravenous drug infusions: failure mode effects analysis[J]. Quality and Safety in Health Care, 2004, 13 (4): 265- 271
doi: 10.1136/qshc.2003.007443
[10]   SUN L, LI Y F, ZIO E Comparison of the HAZOP, FMEA, FRAM, and STPA methods for the hazard analysis of automatic emergency brake systems[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 2022, 8 (3): 031104
doi: 10.1115/1.4051940
[11]   SHARMA R K, KUMAR D, KUMAR P Systematic failure mode effect analysis (FMEA) using fuzzy linguistic modelling[J]. International Journal of Quality and Reliability Management, 2005, 22 (9): 986- 1004
doi: 10.1108/02656710510625248
[12]   ZHAO H, YOU J X, LIU H C Failure mode and effect analysis using MULTIMOORA method with continuous weighted entropy under interval-valued intuitionistic fuzzy environment[J]. Soft Computing, 2017, 21 (18): 5355- 5367
doi: 10.1007/s00500-016-2118-x
[13]   LIU H C, YOU J X, CHEN S, et al An integrated failure mode and effect analysis approach for accurate risk assessment under uncertainty[J]. IIE Transactions, 2016, 48 (11): 1027- 1042
doi: 10.1080/0740817X.2016.1172742
[14]   NIE R X, TIAN Z P, WANG X K, et al Risk evaluation by FMEA of supercritical water gasification system using multi-granular linguistic distribution assessment[J]. Knowledge-Based Systems, 2018, 162: 185- 201
doi: 10.1016/j.knosys.2018.05.030
[15]   王睿, 李延来, 朱江洪, 等 考虑专家共识的改进FMEA风险评估方法[J]. 浙江大学学报: 工学版, 2018, 52 (6): 1058- 1067
WANG Rui, LI Yanlai, ZHU Jianghong, et al Improved FMEA method for risk evaluation considering expert consensus[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (6): 1058- 1067
[16]   CARPITELLA S, CERTA A, IZQUIERDO J, et al A combined multi-criteria approach to support FMECA analyses: a real-world case[J]. Reliability Engineering and System Safety, 2018, 169: 394- 402
doi: 10.1016/j.ress.2017.09.017
[17]   TANG X, ZHANG Q, PENG Z, et al Distribution linguistic preference relations with incomplete symbolic proportions for group decision making[J]. Applied Soft Computing, 2020, 88: 106005
doi: 10.1016/j.asoc.2019.106005
[18]   MENDEL J M, ZADEH L A, TRILLAS E, et al What computing with words means to me [discussion forum][J]. IEEE Computational Intelligence Magazine, 2010, 5 (1): 20- 26
doi: 10.1109/MCI.2009.934561
[19]   LI C C, DONG Y, HERRERA F A consensus model for large-scale linguistic group decision making with a feedback recommendation based on clustered personalized individual semantics and opposing consensus groups[J]. IEEE Transactions on Fuzzy Systems, 2019, 27 (2): 221- 233
doi: 10.1109/TFUZZ.2018.2857720
[20]   ZHANG H, DONG Y, XIAO J, et al Personalized individual semantics-based approach for linguistic failure modes and effects analysis with incomplete preference information[J]. IISE Transactions, 2020, 52 (11): 1275- 1296
doi: 10.1080/24725854.2020.1731774
[21]   LO H W, LIOU J J H, HUANG C N, et al A novel failure mode and effect analysis model for machine tool risk analysis[J]. Reliability Engineering and System Safety, 2019, 183: 173- 183
doi: 10.1016/j.ress.2018.11.018
[22]   尹儇鹏, 徐选华, 陈晓红 基于多主体仿真的大群体应急决策风险致因分析[J]. 中国管理科学, 2020, 28 (2): 208- 219
YIN Xuanpeng, XU Xuanhua, CHEN Xiaohong Risk-causing analysis of large group emergency decision-making based on multi-agent simulation[J]. Chinese Journal of Management Science, 2020, 28 (2): 208- 219
[23]   HUANG J, YOU J X, LIU H C, et al Failure mode and effect analysis improvement: a systematic literature review and future research agenda[J]. Reliability Engineering and System Safety, 2020, 199: 106885
doi: 10.1016/j.ress.2020.106885
[24]   ZHANG Q, HUANG T, TANG X, et al A linguistic information granulation model and its penalty function-based co-evolutionary PSO solution approach for supporting GDM with distributed linguistic preference relations[J]. Information Fusion, 2022, 77: 118- 132
doi: 10.1016/j.inffus.2021.07.017
[25]   HUANG T, TANG X, ZHAO S, et al Linguistic information-based granular computing based on a tournament selection operator-guided PSO for supporting multi-attribute group decision-making with distributed linguistic preference relations[J]. Information Sciences, 2022, 610: 488- 507
doi: 10.1016/j.ins.2022.07.050
[26]   ORLOVSKY S Decision-making with a fuzzy preference relation[J]. Fuzzy Sets and Systems, 1978, 1 (3): 155- 167
doi: 10.1016/0165-0114(78)90001-5
[27]   HERRERA-VIEDMA E, CHICLANA F, HERRERA F, et al Group decision-making model with incomplete fuzzy preference relations based on additive consistency[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2007, 37 (1): 176- 189
doi: 10.1109/TSMCB.2006.875872
[28]   WU Y, ZHANG Z, KOU G, et al Distributed linguistic representations in decision making: taxonomy, key elements and applications, and challenges in data science and explainable artificial intelligence[J]. Information Fusion, 2021, 65: 165- 178
doi: 10.1016/j.inffus.2020.08.018
[29]   ZHANG G, DONG Y, XU Y Consistency and consensus measures for linguistic preference relations based on distribution assessments[J]. Information Fusion, 2014, 17: 46- 55
doi: 10.1016/j.inffus.2012.01.006
[30]   DONG Y, XU Y, YU S Computing the numerical scale of the linguistic term set for the 2-tuple fuzzy linguistic representation model[J]. IEEE Transactions on Fuzzy Systems, 2009, 17 (6): 1366- 1378
doi: 10.1109/TFUZZ.2009.2032172
[31]   ZHOU Y, XIA J, ZHONG Y, et al An improved FMEA method based on the linguistic weighted geometric operator and fuzzy priority[J]. Quality Engineering, 2016, 28 (4): 491- 498
doi: 10.1080/08982112.2015.1132320
[32]   金伟 世界航空发动机发展趋势及经验[J]. 中国工业评论, 2016, (11): 38- 44
JIN Wei Development trends and experience of world aero engines[J]. China Industry Review, 2016, (11): 38- 44
[33]   刘大响, 陈光, 等. 航空发动机——飞机的心脏(第二版)[M]. 北京: 航空工业出版社, 2015.
[34]   KIAMEHR M, HOBDAY M, HAMEDI M Latecomer firm strategies in complex product systems (CoPS): the case of Iran’s thermal electricity generation systems[J]. Research Policy, 2015, 44 (6): 1240- 1251
doi: 10.1016/j.respol.2015.02.005
[35]   杨乃定, 王京北, 张延禄, 等 考虑自适应行为的研发网络风险传播模型构建及仿真[J]. 中国管理科学, 2020, 28 (3): 182- 190
YANG Naiding, WANG Jingbei, ZHANG Yanlu, et al Risk propagation modeling and simulation in R&D network when considering the adaptive behaviors[J]. Chinese Journal of Management Science, 2020, 28 (3): 182- 190
[36]   LIU H C, YOU J X, LU C, et al Application of interval 2-tuple linguistic MULTIMOORA method for health-care waste treatment technology evaluation and selection[J]. Waste Management, 2014, 34 (11): 2355- 2364
doi: 10.1016/j.wasman.2014.07.016
[37]   SCHNEIDER H Failure mode and effect analysis: FMEA from theory to execution[J]. Technometrics, 1996, 38 (1): 80
[38]   ANG K M, LIM W H, ISA N A M, et al A constrained multi-swarm particle swarm optimization without velocity for constrained optimization problems[J]. Expert Systems with Applications, 2020, 140: 112882
doi: 10.1016/j.eswa.2019.112882
[39]   LI C C, RODRÍGUEZ R M, MARTÍNEZ L, et al Personalized individual semantics based on consistency in hesitant linguistic group decision making with comparative linguistic expressions[J]. Knowledge-Based Systems, 2018, 145: 156- 165
doi: 10.1016/j.knosys.2018.01.011
[40]   WANG W, LIU X, QIN Y, et al A risk evaluation and prioritization method for FMEA with prospect theory and Choquet integral[J]. Safety Science, 2018, 110: 152- 163
doi: 10.1016/j.ssci.2018.08.009
[41]   HUANG J, YOU X Y, LIU H C, et al New approach for quality function deployment based on proportional hesitant fuzzy linguistic term sets and prospect theory[J]. International Journal of Production Research, 2019, 57 (5): 1283- 1299
doi: 10.1080/00207543.2018.1470343
[42]   HUANG J, XU D H, LIU H C, et al A new model for failure mode and effect analysis integrating linguistic Z-numbers and projection method[J]. IEEE Transactions on Fuzzy Systems, 2021, 29 (3): 530- 538
doi: 10.1109/TFUZZ.2019.2955916
[43]   赵翼翔, 廖飞飞, 王晗 一种综合赋权的改进FMEA风险评估方法[J]. 工业工程, 2021, 24 (3): 83- 88
ZHAO Yixiang, LIAO Feifei, WANG Han An improved FMEA risk assessment method based on comprehensive empowerment[J]. Industrial Engineering Journal, 2021, 24 (3): 83- 88
doi: 10.3969/j.issn.1007-7375.2021.03.011
[44]   王济干, 和梦思 基于共识模型和前景理论的输水工程运行安全风险评价[J]. 水利经济, 2022, 40 (1): 71- 78
WANG Jigan, HE Mengsi Risk assessment of operation safety of water conveyance projects based on consensus model and prospect theory[J]. Journal of Economics of Water Resources, 2022, 40 (1): 71- 78
doi: 10.3880/j.issn.1003-9511.2022.01.012
[45]   SALAH B, ALNAHHAL M, ALI M Risk prioritization using a modified FMEA analysis in industry 4.0[J]. Journal of Engineering Research, 2023, 11 (4): 460- 468
doi: 10.1016/j.jer.2023.07.001
[46]   SONG W, ZHENG J A new approach to risk assessment in failure mode and effect analysis based on engineering textual data[J]. Quality Engineering, 2024, 36 (4): 805- 823
doi: 10.1080/08982112.2024.2304815
[1] Chuxin WANG,Yingchao WANG,Jiguang YANG,Xiamin FAN,Zheng ZHANG. Land subsidence risk zoning for high speed railway based on hesitant fuzzy linguistic model[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1691-1703.
[2] Huang-yao ZENG,Dan-dan LI,Yan MA,Qun CONG. Risky accounts evaluation method of campus network[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1761-1767.
[3] WANG Rui, LI Yan-lai, ZHU Jiang-hong, YANG Yi. Improved FMEA method for risk evaluation considering expert consensus[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(6): 1058-1067.
[4] LU Ying, GUO Liang-jie, HOU Yun-yue, ZHAO Yun-sheng, CHEN Lian-jin. Comprehensive multi-hazard risk assessment method applicated in urban land-use planning[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(3): 538-546.
[5] ZHANG Xing-you, WANG Shou-xiang. Risk assessment of distribution power systems considering communication systems[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(4): 568-574.