Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (10): 2056-2066    DOI: 10.3785/j.issn.1008-973X.2025.10.006
    
Dynamic evaluation method for milling tool wear state using multi-source data hybrid drive
Jianwei MAO(),Di ZHOU,Xiao ZHUANG,Weifang SUN*()
College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, China
Download: HTML     PDF(4007KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to address the problem that dynamic environmental changes affect the evaluation of cutting tools’ service state during milling, a tool wear evaluation method integrating direct and indirect measurements was proposed. Periodic tool end images were fused with real-time sound data, and the high precision of direct measurement and continuity of indirect measurement were combined to realize robust evaluation of the tool wear state during machining. To improve the evaluation effect, a multi-scale network model was constructed. Wear features at different scales were captured, and multi-source information was deeply fused to enhance the model’s feature extraction capability. Results of milling experiments under different machining parameters show that the proposed method can effectively track feature changes in key features and achieves higher accuracy than comparative models (SPPNet, ASPP, U-Net). In four groups of milling experiments, the proposed method exhibited mean values of 0.05124 for mean absolute error, 0.06273 for root mean square error, and 0.94508 for coefficient of determination. The method showed low evaluation error for the tool service condition and strong dynamic tracking capability.



Key wordstool image      acoustic signal      tool wear      dynamic evaluation      milling     
Received: 28 September 2024      Published: 27 October 2025
CLC:  TH 165  
Fund:  国家自然科学基金资助项目(52205122).
Corresponding Authors: Weifang SUN     E-mail: 1171367413@qq.com;swf@wzu.edu.cn
Cite this article:

Jianwei MAO,Di ZHOU,Xiao ZHUANG,Weifang SUN. Dynamic evaluation method for milling tool wear state using multi-source data hybrid drive. Journal of ZheJiang University (Engineering Science), 2025, 59(10): 2056-2066.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.10.006     OR     https://www.zjujournals.com/eng/Y2025/V59/I10/2056


多源数据混合驱动的铣削刀具磨损状态动态评价方法

动态环境变化会影响铣削过程中加工刀具服役状态的评估,为此提出融合直接与间接测量的刀具磨损评价方法. 将周期性刀具端部图像与实时声音数据融合,结合直接测量的高精度与间接测量的连续性特点,实现所提方法对加工过程中刀具磨损状态的鲁棒评价. 为了提升评价效果,构建多尺度网络模型,通过在不同尺度上捕获磨损特征并深度融合多源信息来增强模型的特征提取能力. 不同加工参数下的铣削实验结果表明,较之对比模型(SPPNet、ASPP、U-Net),所提方法能够有效追踪关键特征变化且评估准确性高. 在4组铣削实验中,所提方法的平均绝对误差均值为0.05124、均方根误差均值为0.06273、决定系数均值为0.94508;该方法的刀具服役状态评价误差低,动态追踪能力强.


关键词: 刀具图像,  声音信号,  刀具磨损,  动态评价,  铣削 
Fig.1 Network structure of multi-scale deep integration model
Fig.2 Network structure of receptive field block
Fig.3 Convolutional block attention module
Fig.4 Network structure of improved receptive field-convolutional block attention module
Fig.5 Vertical machining center
Fig.6 Experimental measurement apparatus
Fig.7 Schematic diagram of milling path
组别n/(r·min?1ap/mmvf/(mm·min?1nm
123000.650010
224000.550010
325000.540011
423000.640010
Tab.1 Milling parameter settings
Fig.8 Schematic diagram of tool wear measurement
Fig.9 Test results of proposed tool wear state evaluation model in four milling experiments
Fig.10 Acoustic signal images of tool under different signal-to-noise ratios
Fig.11 Markov transition field transformed images of acoustic signals
Fig.12 Test results of proposed tool wear state evaluation model in four milling experiments (under different signal-to-noise ratios)
Fig.13 Test results of proposed tool wear state evaluation model in four milling experiments (under different inputs)
输入实验1组实验2组实验3组实验4组
MAERMSER2MAERMSER2MAERMSER2MAERMSER2
信号0.146550.210050.756300.100640.116710.752430.090940.125850.678650.142170.157230.68958
图像0.094620.123960.915110.071300.077820.889920.058900.088090.842530.080070.092690.89210
图像+信号0.140990.184760.811440.083810.096810.829650.072430.099330.799800.073000.102920.86697
图像+MTF0.096740.109270.934040.051860.067760.916540.052920.078530.874860.063340.072240.93446
Tab.2 Evaluation metrics of proposed tool wear state evaluation model in four milling experiments (under different inputs)
Fig.14 Test results of different evaluation models in four milling experiments
模型实验1组实验2组实验3组实验4组
MAERMSER2MAERMSER2MAERMSER2MAERMSER2
SPPNet0.116930.145990.882270.079720.095120.835530.067350.099270.800060.082180.119570.82046
ASPP0.127310.152740.871140.091930.112140.771420.058520.073910.889160.079610.107080.85602
U-Net0.114950.141090.890030.074730.090440.851320.069040.087870.843340.065590.098340.87856
Tab.3 Evaluation metrics of different evaluation models in four milling experiments
Fig.15 Acoustic signal images and images transformed by three signal conversion methods
Fig.16 Test results of models composed of different signal conversion methods in four milling experiments
模型实验1组实验2组实验3组实验4组
MAERMSER2MAERMSER2MAERMSER2MAERMSER2
图像+CWT0.100290.128220.909180.086600.098410.823980.058550.096690.810310.060680.085950.90722
图像+RP0.082320.106280.937600.070470.082180.877240.051650.083680.857910.052190.071420.93594
图像+GAF0.099770.120970.919160.085550.100810.815290.076440.103410.783050.062790.094660.88748
Tab.4 Evaluation metrics of models composed of different signal conversion methods in four milling experiments
[1]   王秋莲, 欧桂雄, 徐雪娇, 等 基于VMD-SSA-LSTM考虑刀具磨损的数控铣床切削功率预测模型研究[J]. 中国机械工程, 2024, 35 (6): 1052- 1063
WANG Qiulian, OU Guixiong, XU Xuejiao, et al Research on CNC milling machine cutting power prediction model considering tool wear based on VMD-SSA-LSTM[J]. China Mechanical Engineering, 2024, 35 (6): 1052- 1063
[2]   PIMENOV D Y, BUSTILLO A, WOJCIECHOWSKI S, et al Artificial intelligence systems for tool condition monitoring in machining: analysis and critical review[J]. Journal of Intelligent Manufacturing, 2023, 34 (5): 2079- 2121
doi: 10.1007/s10845-022-01923-2
[3]   刘献礼, 秦怡源, 岳彩旭, 等 递归特征消除与极端随机树在铣刀磨损监测中的研究[J]. 机械科学与技术, 2023, 42 (6): 821- 828
LIU Xianli, QIN Yiyuan, YUE Caixu, et al Application research on recursive feature elimination and extra trees in milling cutter wear monitoring[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42 (6): 821- 828
[4]   程训, 余建波 基于机器视觉的加工刀具磨损监测方法[J]. 浙江大学学报: 工学版, 2021, 55 (5): 896- 904
CHENG Xun, YU Jianbo Monitoring method for machining tool wear based on machine vision[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (5): 896- 904
[5]   LI S, LING Z, ZHU K Image super resolution by double dictionary learning and its application to tool wear monitoring in micro milling[J]. Mechanical Systems and Signal Processing, 2024, 206: 110917
doi: 10.1016/j.ymssp.2023.110917
[6]   YU J, CHENG X, LU L, et al A machine vision method for measurement of machining tool wear[J]. Measurement, 2021, 182: 109683
doi: 10.1016/j.measurement.2021.109683
[7]   ZHU K, GUO H, LI S, et al Online tool wear monitoring by super-resolution based machine vision[J]. Computers in Industry, 2023, 144: 103782
doi: 10.1016/j.compind.2022.103782
[8]   LI W, FU H, HAN Z, et al Intelligent tool wear prediction based on Informer encoder and stacked bidirectional gated recurrent unit[J]. Robotics and Computer-Integrated Manufacturing, 2022, 77: 102368
doi: 10.1016/j.rcim.2022.102368
[9]   HU K, JIN J, ZHENG F, et al Overview of behavior recognition based on deep learning[J]. Artificial Intelligence Review, 2023, 56 (3): 1833- 1865
doi: 10.1007/s10462-022-10210-8
[10]   刘会永, 张松, 李剑峰, 等 采用改进CNN-BiLSTM模型的刀具磨损状态监测[J]. 中国机械工程, 2022, 33 (16): 1940- 1947
LIU Huiyong, ZHANG Song, LI Jianfeng, et al Tool wear detection based on improved CNN-BiLSTM model[J]. China Mechanical Engineering, 2022, 33 (16): 1940- 1947
[11]   WANG M, YANG L, ZHAO Z, et al Intelligent prediction of wear location and mechanism using image identification based on improved Faster R-CNN model[J]. Tribology International, 2022, 169: 107466
doi: 10.1016/j.triboint.2022.107466
[12]   ZHANG X, YU T, XU P, et al In-process stochastic tool wear identification and its application to the improved cutting force modeling of micro milling[J]. Mechanical Systems and Signal Processing, 2022, 164: 108233
doi: 10.1016/j.ymssp.2021.108233
[13]   史丽晨, 史炜椿, 王海涛, 等 基于DRSN-BiLSTM模型的刀具磨损预测方法研究[J]. 机械工程学报, 2024, 60 (24): 66- 74
SHI Lichen, SHI Weichun, WANG Haitao, et al Tool wear prediction based on DRSN-BiLSTM model[J]. Journal of Mechanical Engineering, 2024, 60 (24): 66- 74
[14]   滕瑞, 黄海松, 杨凯, 等 基于图像编码技术和卷积神经网络的刀具磨损值在线监测方法[J]. 计算机集成制造系统, 2022, 28 (4): 1042- 1051
TENG Rui, HUANG Haisong, YANG Kai, et al On-line monitoring method for tool wear based on image coding technology and convolutional neural network[J]. Computer Integrated Manufacturing Systems, 2022, 28 (4): 1042- 1051
[15]   朱锟鹏, 黄称意, 李俊 刀具磨损状态的多步向前智能预测[J]. 计算机集成制造系统, 2024, 30 (9): 3038- 3049
ZHU Kunpeng, HUANG Chengyi, LI Jun Multi-step forward intelligent prediction of tool wear condition[J]. Computer Integrated Manufacturing Systems, 2024, 30 (9): 3038- 3049
[16]   李恒帅, 刘献礼, 岳彩旭, 等 刀具磨损自动识别及检测系统[J]. 计算机应用, 2021, 41 (Suppl.1): 259- 263
LI Hengshuai, LIU Xianli, YUE Caixu, et al Automatic recognition and detection system for cutter wear[J]. Journal of Computer Applications, 2021, 41 (Suppl.1): 259- 263
[1] Chao LIU,Zunpeng HUANG,Shaofu HUANG. Surface roughness modeling of thread workpieces in whirlwind milling considering material deformation[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 761-771.
[2] Tao LV,Aibing YU,Xuefeng XU,Minhai MA,Conglin ZHAO. Penetration and deposition characteristics and machining performance of magnetic field assisted nanofluid spray lubrication[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(11): 2320-2329.
[3] Qi-lin DENG,Juan LU,Yong-hui CHEN,Jian FENG,Xiao-ping LIAO,Jun-yan MA. Optimization method of CNC milling parameters based on deep reinforcement learning[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2145-2155.
[4] Xun CHENG,Jian-bo YU. Monitoring method for machining tool wear based on machine vision[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 896-904.
[5] Hai-jin WANG,Zong-yu YIN,Zhen-zheng KE,Ying-jie GUO,Hui-yue DONG. Wear monitoring of helical milling tool based on one-dimensional convolutional neural network[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 931-939.
[6] Mao-xia RAN,Qin-yuan HUANG,Xin LIU,Hong SONG,Hao WU. Internal defect detection of arc magnets based on optimized variational mode decomposition[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2158-2168.
[7] DONG Hui yue, ZHU Ling sheng, ZHANG Ming, LI Shao bo, LUO Shui jun. Orbital milling method of aircraft skins trimming[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2033-2039.