Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (8): 1746-1754    DOI: 10.3785/j.issn.1008-973X.2025.08.022
    
Experimental study on weatherability of MICP-reinforced sea sand under seawater environment
Wenbin LIN1,2(),Xianfeng LIU1,2,Yupeng GAO1,2,Shenggen CAO1,2,Xianghang CHEN1,2,Xiaohui CHENG3,*()
1. Fujian Provincial Key Laboratory of Advanced Technology and Informatization in Civil Engineering, Fujian University of Technology, Fuzhou 350118, China
2. Institute of Earth Sciences and Engineering, Fujian University of Technology, Fuzhou 350118, China
3. Department of Civil Engineering, Tsinghua University, Beijing 100084, China
Download: HTML     PDF(3951KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Specimens treated in both seawater and freshwater environments were subjected to wet-dry cycling and acid solution immersion tests in order to analyze the weathering resistance of silica sea sand reinforced using microbially induced calcium carbonate precipitation (MICP). Apparent changes, mass-loss rate and unconfined compressive strength (UCS) were measured. The intrinsic mechanism of specimen deterioration was analyzed through scanning electron microscope and X-ray diffraction. Results showed that seawater specimens exhibited better resistance to dry-wet cycles than freshwater specimens, with mass-loss rates of 3.60% and 11.94% after 60 cycles, and the UCS residual ratios were 38.44% and 24.69%, respectively. Freshwater specimens demonstrated greater acid resistance than seawater specimens. The mass-loss rates of freshwater and seawater specimens were 0.44%-3.46% and 0.51%-6.90%, respectively, with UCS residual ratios being 51.22%-92.14% and 26.47%-87.36% after 60 days of immersion in acid solutions of varying pH. Dry-wet cycles did not affect the morphology of calcium carbonate crystals inside the specimens. The strength-loss was mainly due to the degree of cementation between sand particles. The complex ions in seawater promote the uniform distribution of calcium carbonate, resulting in better resistance to dry-wet cycles in seawater specimens. Immersion in acid solutions leads to varying degrees of corrosion of calcium carbonate crystals, damaging the cementation between sand particles. Since freshwater specimens contain a relatively higher mass of calcium carbonate, their ability to resist acid corrosion is stronger.



Key wordsmicrobially induced calcite precipitation      natural seawater      sea sand      dry-wet cycle      acid solution corrosion     
Received: 16 August 2024      Published: 28 July 2025
CLC:  TU 441  
Fund:  福建省交通运输科技计划资助项目(YB202417);福建省科技计划资助项目(2023Y3008);大学生创新创业训练计划资助项目(S202410388061,S202410388066).
Corresponding Authors: Xiaohui CHENG     E-mail: linwb@fjut.edu.cn;chengxh@tsinghua.edu.cn
Cite this article:

Wenbin LIN,Xianfeng LIU,Yupeng GAO,Shenggen CAO,Xianghang CHEN,Xiaohui CHENG. Experimental study on weatherability of MICP-reinforced sea sand under seawater environment. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1746-1754.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.08.022     OR     https://www.zjujournals.com/eng/Y2025/V59/I8/1746


海水环境下MICP加固海砂耐候性试验研究

为了探究微生物诱导碳酸钙沉淀(MICP)技术加固硅质海砂的耐候性能,对海水和淡水环境下加固后的试样进行干湿循环和酸溶液浸泡试验,测试了试样的表观变化、质量损失率和无侧限抗压强度(UCS),通过扫描电镜和X射线衍射分析试样劣化的内在机理. 结果表明,海水试样的抗干湿循环能力更强,60次干湿循环后,海水和淡水试样的质量损失率分别为3.60%和11.94%,UCS剩余率分别为38.44%和24.69%. 淡水试样的耐酸性能强于海水试样,60天不同pH酸溶液浸泡后,淡水和海水试样的质量损失率分别为0.44%~3.46%和0.51%~6.90%,UCS剩余率分别为51.22%~92.14%和26.47%~87.36%. 干湿循环没有改变试样内部碳酸钙晶体的形貌,试样强度的损失取决于砂颗粒间的胶结程度. 海水中的复杂离子促进了碳酸钙的均匀分布,使得海水试样具有更好的抗干湿循环性能. 酸溶液浸泡导致不同程度的碳酸钙晶体腐蚀,并破坏砂颗粒间的胶结作用. 淡水试样的碳酸钙生成质量相对更高,因此抵抗酸腐蚀能力更强.


关键词: 微生物诱导碳酸钙沉淀,  天然海水,  海砂,  干湿循环,  酸溶液腐蚀 
Fig.1 Particle size distribution curve of sea sand
试验胶结液类型nt/d
干湿循环去离子水7、14、28、60
干湿循环天然海水7、14、28、60
酸溶液浸泡去离子水7、14、28、60
酸溶液浸泡天然海水7、14、28、60
Tab.1 Test programs in different erosive environment
Fig.2 Surface morphology variation of specimen under dry-wet cycle     
Fig.3 Mass-loss rate of specimen under different dry-wet cycles
Fig.4 UCS residuals of specimens under different dry-wet cycles
Fig.5 Surface morphology variation of specimen under different immersion time and pH value
Fig.6 Mass-loss rate of specimen under different immersion time and pH
t/d试样类型$\varDelta_U $/%
pH = 3.5pH = 4.5pH = 5.5pH = 6.5
7海水试样82.0887.5393.1596.75
7淡水试样83.2290.6392.7995.36
14海水试样57.8277.1187.2794.52
14淡水试样77.9284.1391.4594.96
28海水试样42.0763.0176.8392.81
28淡水试样67.2281.4784.5092.74
60海水试样26.4742.7962.9687.36
60淡水试样51.2267.2281.4692.14
Tab.2 UCS residual rate of specimen under different immersion time and pH
Fig.7 Internal microscopic morphology of specimen before and after dry-wet cycle
Fig.8 Internal microscopic morphology of seawater and freshwater specimen
Fig.9 Internal microscopic morphology of seawater specimen after 60 days of immersion in different pH acid solutions
Fig.10 EDS energy spectrum result after 60 d immersion of pH = 3.5 seawater specimen
Fig.11 XRD pattern of specimen under different erosion effect
[1]   郑刚, 龚晓南, 谢永利, 等 地基处理技术发展综述[J]. 土木工程学报, 2012, 45 (2): 127- 146
ZHENG Gang, GONG Xiaonan, XIE Yongli, et al State-of-the-art techniques for ground improvement in China[J]. China Civil Engineering Journal, 2012, 45 (2): 127- 146
[2]   刘汉龙, 赵明华 地基处理研究进展[J]. 土木工程学报, 2016, 49 (1): 96- 115
LIU Hanlong, ZHAO Minghua Review of ground improvement technical and its application in China[J]. China Civil Engineering Journal, 2016, 49 (1): 96- 115
[3]   程晓辉, 麻强, 杨钻, 等 微生物灌浆加固液化砂土地基的动力反应研究[J]. 岩土工程学报, 2013, 35 (8): 1486- 1495
CHENG Xiaohui, MA Qiang, YANG Zuan, et al Dynamic response of liquefiable sand foundation improved by bio-grouting[J]. Chinese Journal of Geotechnical Engineering, 2013, 35 (8): 1486- 1495
[4]   谢约翰, 唐朝生, 刘博, 等 基于微生物诱导碳酸钙沉积技术的黏性土水稳性改良[J]. 浙江大学学报: 工学版, 2019, 53 (8): 1438- 1447
XIE Yuehan, TANG Chaosheng, LIU Bo, et al Water stability improvement of clayey soil based on microbial induced calcite precipitation[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (8): 1438- 1447
[5]   林文彬, 程晓辉, 由爽, 等 微生物注浆加固沙漠风积砂试验研究[J]. 工程力学, 2023, 41: 1- 13
LIN Wenbin, CHENG Xiaohui, YOU Shuang, et al Experimental study on reinforcement of desert aeolian sand by MICP technology[J]. Engineering Mechanics, 2023, 41: 1- 13
doi: 10.6052/j.issn.1000-4750.2022.02.0156
[6]   徐晶 基于微生物矿化沉积的混凝土裂缝修复研究进展[J]. 浙江大学学报: 工学版, 2012, 46 (11): 89- 96
XU Jing Research progress of concrete crack remediation based on microbially mineral precipitation[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (11): 89- 96
[7]   FAN Q, FAN L, QUANCH W M, et al The impact of seawater ions on urea decomposition and calcium carbonate precipitation in the MICP process[J]. Cement and Concrete Composites, 2024, 152: 105631
doi: 10.1016/j.cemconcomp.2024.105631
[8]   武发思, 张永, 苏敏, 等 生物技术在文物保护修复中的应用研究进展[J]. 文物保护与考古科学, 2022, 34 (1): 133- 143
WU Fasi, ZHANG Yong, SU Min, et al Advancement of biotechnology for the conservation and restoration of cultural heritage objects[J]. Sciences of Conservation and Archaeology, 2022, 34 (1): 133- 143
[9]   裴迪, 刘志明, 胡碧茹, 等 巴氏芽孢杆菌矿化作用机理及应用研究进展[J]. 生物化学与生物物理进展, 2020, 47 (6): 467- 482
PEI Di, LIU Zhiming, HU Biru, et al Progress on mineralization mechanism and application research of Sporosarcina pasteurii[J]. Progress in Biochemistry and Biophysics, 2020, 47 (6): 467- 482
[10]   CHENG L, SHAHIN M A, CORD-RUWISCH R Bio-cementation of sandy soil using microbially induced carbonate precipitation for marine environments[J]. Géotechnique, 2014, 64 (12): 1010- 1013
[11]   WANG Z Y, CHEN W J, TONG Z Y, et al Research on the effect of natural seawater in domesticating Bacillus pasteurii and reinforcing calcareous sand[J]. Journal of Marine Science and Engineering, 2024, 12 (4): 542
doi: 10.3390/jmse12040542
[12]   肖瑶, 邓华锋, 李建林, 等 海水环境下巴氏芽孢杆菌驯化及钙质砂固化效果研究[J]. 岩土力学, 2022, 43 (2): 395- 404
XIAO Yao, DENG Huafeng, LI Jianlin, et al Study on the domestication of Sporosarcina pasteurii and strengthening effect of calcareous sand in seawater environment[J]. Rock and Soil Mechanics, 2022, 43 (2): 395- 404
[13]   XIAO R, LIANG B Y, WU F, et al Biocementation of coral sand under seawater environment and an improved three-stage biogrouting approach[J]. Construction and Building Materials, 2023, 362: 129758
doi: 10.1016/j.conbuildmat.2022.129758
[14]   WANG Z Y, ZHAO X Y, CHEN X, et al Mechanical properties and constitutive model of calcareous sand strengthened by MICP[J]. Journal of Marine Science and Engineering, 2023, 11 (4): 819
doi: 10.3390/jmse11040819
[15]   彭劼, 田艳梅, 杨建贵 海水环境下MICP加固珊瑚砂试验[J]. 水利水电科技进展, 2019, 39 (1): 58- 62
PENG Jie, TIAN Yanmei, YANG Jiangui Experiments of coral sand reinforcement using MICP in seawater environment[J]. Advances in Science and Technology of Water Resources, 2019, 39 (1): 58- 62
[16]   LIN W B, GAO Y P, LIN W, et al Seawater-based bio-cementation of natural sea sand via microbially induced carbonate precipitation[J]. Environmental Technology and Innovation, 2023, 29: 103010
doi: 10.1016/j.eti.2023.103010
[17]   董博文, 刘士雨, 俞缙, 等 基于微生物诱导碳酸钙沉淀的天然海水加固钙质砂效果评价[J]. 岩土力学, 2021, 42 (4): 1104- 1114
DONG Bowen, LIU Shiyu, YU Jin, et al Evaluation of the effect of natural seawater strengthening calcareous sand based on MICP[J]. Rock and Soil Mechanics, 2021, 42 (4): 1104- 1114
[18]   王子玉, 喻文晔, 齐超楠, 等 海水环境下MICP的反应机理与影响因素[J]. 土木与环境工程学报(中英文), 2022, 44 (5): 128- 135
WANG Ziyu, YU Wenye, QI Chaonan, et al Reaction mechanism and influencing factors of MICP in seawater environment[J]. Journal of Civil and Environmental Engineering, 2022, 44 (5): 128- 135
[19]   LI S L, QU Q, LI L, et al Bacillus cereus s-EPS as a dual bio-functional corrosion and scale inhibitor in artificial seawater[J]. Water Research, 2019, 166: 115094
doi: 10.1016/j.watres.2019.115094
[20]   PENG J, CAO T C, HE J, et al Improvement of coral sand with MICP using various calcium sources in sea water environment[J]. Frontiers in Physics, 2022, (10): 82
[21]   LIU S Y, DONG B W, YU J, et al Effect of different mineralization modes on strengthening calcareous sand under simulated seawater conditions[J]. Sustainability, 2021, 13 (15): 8265
doi: 10.3390/su13158265
[22]   杨司盟, 彭劼, 温智力, 等 浓缩海水作为钙源在微生物诱导碳酸钙加固砂土中的应用[J]. 岩土力学, 2021, 42 (3): 746- 754
YANG Simeng, PENG Jie, WEN Zhili, et al Application of concentrated seawater as calcium source solution in sand reinforcement using MICP[J]. Rock and Soil Mechanics, 2021, 42 (3): 746- 754
[23]   刘家明, 童华炜, 赵寄橦, 等 盐溶液环境下微生物固化技术加固钙质砂的试验研究[J]. 科学技术与工程, 2021, 21 (12): 5046- 5053
LIU Jiaming, TONG Huawei, ZHAO Jitong, et al Experimental study of microbial curing technology for reinforcing calcareous sand under salt solution environment[J]. Science Technology and Engineering, 2021, 21 (12): 5046- 5053
doi: 10.3969/j.issn.1671-1815.2021.12.043
[24]   ZHAO J T, SHAN Y, TONG H W, et al Study on calcareous sand treated by MICP in different NaCl concentrations[J]. European Journal of Environmental and Civil Engineering, 2023, 27 (10): 3137- 3156
doi: 10.1080/19648189.2022.2130439
[25]   滕秀英, 王子玉, 贾永刚, 等 天然海水环境下离子浓度对MICP反应的影响[J]. 土木与环境工程学报(中英文), 2024, 46 (5): 47- 56
TENG Xiuying, WANG Ziyu, JIA Yonggang, et al Effect of ion concentration on MICP reaction in natural seawater environment[J]. Journal of Civil and Environmental Engineering, 2024, 46 (5): 47- 56
[26]   XU X C, GUO H X, CHENG X H, et al The promotion of magnesium ions on aragonite precipitation in MICP process[J]. Construction and Building Materials, 2020, 263: 120057
doi: 10.1016/j.conbuildmat.2020.120057
[27]   李艺隆, 国振, 徐强, 等 海水环境下MICP胶结钙质砂干湿循环试验研究[J]. 浙江大学学报: 工学版, 2022, 56 (9): 1740- 1749
LI Yilong, GUO Zhen, XU Qiang, et al Experimental research on wet-dry cycle of MICP cemented calcareous sand in seawater environment[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (9): 1740- 1749
[28]   金伟良, 赵羽习. 混凝土结构耐久性研究的回顾与展望[J]. 浙江大学学报: 工学版, 2022, 36(4): 371-380.
JIN Weiliang, ZHAO Yuxi. State-of-the-art on durability of concrete structures [J]. Journal of Zhejiang University: Engineering Science, 2002, 36(4): 371-380.
[29]   王鹏翱. 盐碱环境下红砂岩风化土的微生物矿化试验研究[D]. 呼和浩特: 内蒙古工业大学, 2021.
WANG Peng’ao. Experimental study on microbial mineralization of red sandstone weathered soil in saline-alkali environment [D]. Hohhot: Inner Mongolia University of Technology, 2021.
[30]   秦骁. 微生物诱导矿化材料耐候性能试验研究[D]. 呼和浩特: 内蒙古工业大学, 2017.
QIN Xiao. Experimental research on the weatherability resistance of new material based on MICP [D]. Hohhot: Inner Mongolia University of Technology, 2017.
[31]   IMRAN M A, NAKASHIMA K, EVELPIDOU N, et al Durability improvement of biocemented sand by fiber-reinforced MICP for coastal erosion protection[J]. Materials, 2022, 15 (7): 2389
doi: 10.3390/ma15072389
[32]   汤佳辉, 彭劼, 许鹏旭, 等 MICP加固钙质砂的耐久性试验研究[J]. 河北工程大学学报: 自然科学版, 2023, 40 (1): 29- 34
TANG Jiahui, PENG Jie, XU Pengxu, et al Experimental study on durability of MICP-solidified calcareous sand[J]. Journal of Hebei University of Engineering: Natural Science Edition, 2023, 40 (1): 29- 34
[33]   王燕星, 李驰, 高利平, 等 低磁场核磁共振测定盐环境下微生物诱导碳酸钙沉积固化材料的孔隙结构[J]. 工业建筑, 2020, 50 (12): 1- 7
WANG Yanxing, LI Chi, GAO Liping, et al Determination on pore structure of microbial induced mineralization materials in salt environment by NMR[J]. Industrial Construction, 2020, 50 (12): 1- 7
[34]   CHENG L, CORD-RUWISCH R, SHAHIN M A Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation[J]. Canadian Geotechnical Journal, 2013, 50 (1): 81- 90
doi: 10.1139/cgj-2012-0023
[35]   LI C, WANG Y X, ZHOU T J, et al Sulfate acid corrosion mechanism of biogeomaterial based on MICP technology[J]. Journal of Materials in Civil Engineering, 2019, 31 (7): 04019097.1- 04019097.11
[36]   GOWTHAMAN S, NAKASHIMA K, KAWASAKI S Durability analysis of bio-cemented slope soil under the exposure of acid rain[J]. Journal of Soils and Sediments, 2021, 21: 2831- 2844
doi: 10.1007/s11368-021-02997-w
[37]   LI M, CHENG X H, GUO H X, et al Enhancement of the yield and strength of microbially-induced carbonate precipitation by optimum cultivation and grouting measures for civil engineering applications[J]. Journal of Pure and Applied Microbiology, 2013, 7 (Supple.): 631- 638
[38]   中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082-2009[S]. 北京: 中国建筑工业出版社, 2009.
[39]   中华人民共和国住房和城乡建设部. 混凝土结构耐久性设计标准: GB/T 50476-2019[S]. 北京: 中国建筑工业出版社, 2019.
[40]   吴晓萍. 芽孢杆菌沉淀碳酸钙的影响因素[D]. 武汉: 中国地质大学, 2013.
WU Xiaoping. The factors influencing calcium carbonate precipitation induced by Bacillus sp. [D]. Wuhan: China University of Geosciences, 2013.
[41]   PINGITORE J N E, MEITZNER G, LOVE K M Identification of sulfate in natural carbonates by X-ray absorption spectroscopy[J]. Geochimica et Cosmochimica Acta, 1995, 59 (12): 2477- 2483
doi: 10.1016/0016-7037(95)00142-5
[1] Yi-long LI,Zhen GUO,Qiang XU,Yu-jie LI. Experimental research on wet-dry cycle of MICP cemented calcareous sand in seawater environment[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1740-1749.
[2] Shao-xiang CHEN,Zhi-gang CAO,Xing-chi YE,Yuan-qiang CAI,Qi ZHANG. Hypoplastic model for road base coarse-grained materials accounting for temperature effect[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 938-946, 976.
[3] Xin-shan ZHUANG,Han-wen ZHAO,Jun-xiang WANG,Yong-jie HUANG. Experimental study of dynamic elastic modulus and damping ratio of expansive soil in Hefei[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 759-766.