|
|
Spatial-temporal multi-graph convolution for traffic flow prediction by integrating knowledge graphs |
Jinye LI( ),Yongqiang LI*( ) |
College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China |
|
|
Abstract A spatial-temporal multi-graph convolution traffic flow prediction model by integrating static and dynamic knowledge graphs was proposed, as current traffic flow prediction methods focus on the spatial-temporal correlation of traffic information and fail to fully take into account the influence of external factors on traffic. An urban traffic knowledge graph and four road network topological graphs with distinct semantics were systematically constructed, drawing upon the road traffic information and the external factors. The urban traffic knowledge graph was inputted into the relational evolution graph convolutional neural network to realize the knowledge embedding. The traffic flow matrix and the knowledge embedding were integrated using the knowledge fusion module. The four road network topology graphs and the traffic flow matrix with fused knowledge were fed into the spatial-temporal multi-graph convolution module to extract spatiotemporal features, and the traffic flow prediction value was outputted through the fully connected layer. The model performance was evaluated on a Hangzhou traffic data set. Compared with the advanced baseline, the performance of the proposed model improved by 5.76%-10.71%. Robustness experiment results show that the proposed model has a strong ability to resist interference.
|
Received: 20 September 2023
Published: 01 July 2024
|
|
Fund: 国家自然科学基金资助项目(62073294);浙江省自然科学基金资助项目(LZ21F030003). |
Corresponding Authors:
Yongqiang LI
E-mail: 2924258232@qq.com;yqli@zjut.edu.cn
|
融合知识图谱的时空多图卷积交通流量预测
现有的交通流量预测方法关注交通信息的时空相关性,未充分考虑外部因素对交通的影响,为此提出融合静态和动态知识图谱的时空多图卷积交通流量预测模型. 基于道路交通信息和外部因素,构建城市交通知识图谱和4个不同语义的路网拓扑图,将城市交通知识图谱输入关系演化图卷积神经网络,实现知识嵌入;使用知识融合模块将车流量矩阵与知识嵌入融合;将4个路网拓扑图和融合知识的车流量矩阵输入时空多图卷积模块,提取时空特征,通过全连接层输出交通流量预测值. 在杭州交通数据集上评估模型性能,与先进的基线模型对比,所提模型的性能提高了5.76%~10.71%. 鲁棒性实验结果表明,所提模型具有较强的抗干扰能力.
关键词:
智能交通,
交通流量预测,
城市交通知识图谱,
多图卷积神经网络,
知识融合模块,
路网拓扑图
|
|
[1] |
陆化普, 李瑞敏 城市智能交通系统的发展现状与趋势[J]. 工程研究——跨学科视野中的工程, 2014, 6 (1): 6- 19 LU Huapu, LI Ruimin Developing trend of ITS and strategy suggestions[J]. Journal of Engineering Studies, 2014, 6 (1): 6- 19
doi: 10.3724/SP.J.1224.2014.00006
|
|
|
[2] |
NAGY A M, SIMON V Survey on traffic prediction in smart cities[J]. Pervasive and Mobile Computing, 2018, 50: 148- 163
doi: 10.1016/j.pmcj.2018.07.004
|
|
|
[3] |
周毅, 胡姝婷, 李伟, 等 图神经网络驱动的交通预测技术: 探索与挑战[J]. 物联网学报, 2021, 5 (4): 1- 16 ZHOU Yi, HU Shuting, LI Wei, et al Graph neural network driven traffic prediction technology: review and challenge[J]. Chinese Journal on Internet of Things, 2021, 5 (4): 1- 16
doi: 10.11959/j.issn.2096-3750.2021.00235
|
|
|
[4] |
LANA I, DEL SER J, VELEZ M, et al Road traffic forecasting: recent advances and new challenges[J]. IEEE Intelligent Transportation Systems Magazine, 2018, 10 (2): 93- 109
doi: 10.1109/MITS.2018.2806634
|
|
|
[5] |
WANG J, ZHU W, SUN Y, et al An effective dynamic spatiotemporal framework with external features information for traffic prediction[J]. Applied Intelligence, 2021, 51: 3159- 3173
doi: 10.1007/s10489-020-02043-1
|
|
|
[6] |
ZHANG D, KABUKA M R Combining weather condition data to predict traffic flow: a GRU‐based deep learning approach[J]. IET Intelligent Transport Systems, 2018, 12 (7): 578- 585
doi: 10.1049/iet-its.2017.0313
|
|
|
[7] |
LI Z, JIN X, LI W, et al. Temporal knowledge graph reasoning based on evolutional representation learning [C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval . Montréal: ACM, 2021: 408–417.
|
|
|
[8] |
孙赟, 李明涛, 姚晓晖 基于BP神经网络人群流量预测的实现[J]. 中国安全生产科学技术, 2010, 6 (2): 61- 65 SUN Yun, LI Mingtao, YAO Xiaohui Implementation of crowd flow prediction based on BP neural network[J]. Journal of Safety Science and Technology, 2010, 6 (2): 61- 65
|
|
|
[9] |
AHN J, KO E, KIM E Y. Highway traffic flow prediction using support vector regression and Bayesian classifier [C]// 2016 International Conference on Big Data and Smart Computing . Hong Kong: IEEE, 2016: 239–244.
|
|
|
[10] |
DAI G, MA C, XU X Short-term traffic flow prediction method for urban road sections based on space–time analysis and GRU[J]. IEEE Access, 2019, 7: 143025- 143035
doi: 10.1109/ACCESS.2019.2941280
|
|
|
[11] |
PAN B, DEMIRYUREK U, SHAHABI C. Utilizing real-world transportation data for accurate traffic prediction [C]// 2012 IEEE 12th International Conference on Data Mining . Brussels: IEEE, 2012: 595–604.
|
|
|
[12] |
HAMED M M, AL-MASAEID H R, SAID Z M B Short-term prediction of traffic volume in urban arterials[J]. Journal of Transportation Engineering, 1995, 121 (3): 249- 254
doi: 10.1061/(ASCE)0733-947X(1995)121:3(249)
|
|
|
[13] |
OKUTANI I, STEPHANEDES Y J Dynamic prediction of traffic volume through Kalman filtering theory[J]. Transportation Research Part B: Methodological, 1984, 18 (1): 1- 11
doi: 10.1016/0191-2615(84)90002-X
|
|
|
[14] |
CAI P, WANG Y, LU G, et al A spatiotemporal correlative k-nearest neighbor model for short-term traffic multistep forecasting[J]. Transportation Research Part C: Emerging Technologies, 2016, 62: 21- 34
doi: 10.1016/j.trc.2015.11.002
|
|
|
[15] |
王博文, 王景升, 朱茵, 等 基于ARMA-SVR的短时交通流量预测模型研究[J]. 公路交通科技, 2021, 38 (11): 126- 133 WANG Bowen, WANG Jingsheng, ZHU Yin, et al Study on short-term traffic volume prediction model based on ARMA-SVR[J]. Journal of Highway and Transportation Research and Development, 2021, 38 (11): 126- 133
|
|
|
[16] |
KUMAR K, PARIDA M, KATIYAR V K Short term traffic flow prediction for a non urban highway using artificial neural network[J]. Procedia - Social and Behavioral Sciences, 2013, 104: 755- 764
doi: 10.1016/j.sbspro.2013.11.170
|
|
|
[17] |
YANG B, SUN S, LI J, et al Traffic flow prediction using LSTM with feature enhancement[J]. Neurocomputing, 2019, 332: 320- 327
doi: 10.1016/j.neucom.2018.12.016
|
|
|
[18] |
HUSSAIN B, AFZAL M K, AHMAD S, et al Intelligent traffic flow prediction using optimized GRU model[J]. IEEE Access, 2021, 9: 100736- 100746
doi: 10.1109/ACCESS.2021.3097141
|
|
|
[19] |
MA X, DAI Z, HE Z, et al Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction[J]. Sensors, 2017, 17 (4): 818
doi: 10.3390/s17040818
|
|
|
[20] |
GUO S, LIN Y, LI S, et al Deep spatial–temporal 3D convolutional neural networks for traffic data forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20 (10): 3913- 3926
doi: 10.1109/TITS.2019.2906365
|
|
|
[21] |
ZHENG H, LIN F, FENG X, et al A hybrid deep learning model with attention-based conv-LSTM networks for short-term traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22 (11): 6910- 6920
doi: 10.1109/TITS.2020.2997352
|
|
|
[22] |
WANG H, ZHANG R, CHENG X, et al Hierarchical traffic flow prediction based on spatial-temporal graph convolutional network[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (9): 16137- 16147
doi: 10.1109/TITS.2022.3148105
|
|
|
[23] |
YIN X, WU G, WEI J, et al Deep learning on traffic prediction: methods, analysis, and future directions[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23 (6): 4927- 4943
|
|
|
[24] |
ZHAO L, SONG Y, ZHANG C, et al T-GCN: a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21 (9): 3848- 3858
doi: 10.1109/TITS.2019.2935152
|
|
|
[25] |
BAI J, ZHU J, SONG Y, et al A3T-GCN: attention temporal graph convolutional network for traffic forecasting[J]. ISPRS International Journal of Geo-Information, 2021, 10 (7): 485
doi: 10.3390/ijgi10070485
|
|
|
[26] |
LV M, HONG Z, CHEN L, et al Temporal multi-graph convolutional network for traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22 (6): 3337- 3348
doi: 10.1109/TITS.2020.2983763
|
|
|
[27] |
ZHU J, HAN X, DENG H, et al KST-GCN: a knowledge-driven spatial-temporal graph convolutional network for traffic forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (9): 15055- 15065
doi: 10.1109/TITS.2021.3136287
|
|
|
[28] |
SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks [C]// Proceedings of the European Semantic Web Conference . [S. l.]: Springer, 2018: 593–607.
|
|
|
[29] |
DUDEK G Multilayer perceptron for GEFCom2014 probabilistic electricity price forecasting[J]. International Journal of Forecasting, 2016, 32 (3): 1057- 1060
doi: 10.1016/j.ijforecast.2015.11.009
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|