|
|
Precision controllable mesh generation for boundary representation model |
Zheng ZENG1( ),Xiaohong JIA1,*( ),Shiqing XIN2,Dongming YAN3,4 |
1. Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China 2. School of Computer Science and Technology, Shandong University, Qingdao 250100, China 3. State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China 4. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China |
|
|
Abstract A precision-preserving mesh generation algorithm for computer aided design (CAD) solid models was proposed aiming at the issues of large errors, high resolution and non-watertightness in the surface mesh models generated by boundary representation models. The watertightness of the mesh was ensured by synchronously generating aligned pairs of vertices on shared curves. A continuous representation was utilized to design the target edge length of the mesh, resulting in a high-precision, low-resolution mesh. The algorithm can achieve higher-precision meshes with fewer mesh faces, while maintaining comparable mesh quality compared to existing open-source mesh generation software.
|
Received: 21 July 2023
Published: 23 January 2024
|
|
Fund: 国家重点研发计划资助项目(2020YFB1708900); 国家自然科学基金委优秀青年基金资助项目(12022117); 国家自然基金资助项目(2022117, 62272277, 62172415); 中国科学院稳定支持基础研究领域青年团队计划资助项目(YSBR-034); 清华大学水沙科学与水利水电工程国家重点实验室开放基金资助项目(sklhse-2022-D-04). |
Corresponding Authors:
Xiaohong JIA
E-mail: zengzheng14@amss.ac.cn;xhjia@amss.ac.cn
|
精度可控的边界表示模型网格生成
针对边界表示模型生成的面网格模型存在的误差大、分辨率高和不水密的问题,提出针对计算机辅助设计(CAD)实体模型的保精度网格生成算法. 算法通过同步生成对齐共边点对保证网格的水密性;利用连续表征设计网格目标边长,以生成高精度、低分辨率的网格. 与现有的开源网格生成软件相比,算法能用更少的网格面片数生成精度更高的网格,且网格质量与其相当.
关键词:
边界表示模型,
网格生成,
水密性,
精度优化,
网格分辨率优化
|
|
[1] |
Open Cascade SAS. Open cascade technology [EB/OL]. (2023-01-01)[2023-04-15]. https://www.opencascade.com/.
|
|
|
[2] |
SCHÖBERL J NETGEN An advancing front 2D/3D-mesh generator based on abstract rules[J]. Computing and Visualization in Science, 1997, 1 (1): 41- 52
doi: 10.1007/s007910050004
|
|
|
[3] |
GEUZAINE C, REMACLE J F Gmsh: a 3-D finite element mesh generator with built-in pre-and post-processing facilities[J]. International Journal for Numerical Methods in Engineering, 2009, 79 (11): 1309- 1331
doi: 10.1002/nme.2579
|
|
|
[4] |
ATTENE M A lightweight approach to repairing digitized polygon meshes[J]. The Visual Computer, 2010, 26 (11): 1393- 1406
doi: 10.1007/s00371-010-0416-3
|
|
|
[5] |
JU T Robust repair of polygonal models[J]. ACM Transactions on Graphics, 2004, 23 (3): 888- 895
doi: 10.1145/1015706.1015815
|
|
|
[6] |
王骁, 雷娜, 罗钟铉 基于局部的全自动网格修复算法[J]. 计算机辅助设计与图形学学报, 2022, 34 (19179): 1391- 1401 WANG Xiao, LEI Na, LUO Zhongxuan An automatic surface-based mesh repairing algorithm[J]. Journal of Computer-Aided Design and Computer Graphics, 2022, 34 (19179): 1391- 1401
|
|
|
[7] |
CENTIN M, PEZZOTTI N, SIGNORONI A Poisson-driven seamless completion of triangular meshes[J]. Computer Aided Geometric Design, 2015, 35: 42- 55
|
|
|
[8] |
ALLIEZ P, UCELLI G, GOTSMAN C, et al. Recent advances in remeshing of surfaces [M]// DE FLORIANI L, SPAGNUOLO M. Shape analysis and structuring . Berlin: Springer , 2008: 53-82.
|
|
|
[9] |
BOTSCH M, KOBBELT L, PAULY M, et al. Polygon mesh processing [M]. Boca Raton: CRC Press, 2010: 85-150.
|
|
|
[10] |
KHAN D, PLOPSKI A, FUJIMOTO Y, et al Surface remeshing: a systematic literature review of methods and research directions[J]. IEEE Transactions on Visualization and Computer Graphics, 2020, 28 (3): 1680- 1713
|
|
|
[11] |
HARTMANN E A marching method for the triangulation of surfaces[J]. The Visual Computer, 1998, 14 (3): 95- 108
doi: 10.1007/s003710050126
|
|
|
[12] |
CUILLIÉRE J An adaptive method for the automatic triangulation of 3D parametric surfaces[J]. Computer-Aided Design, 1998, 30 (2): 139- 149
doi: 10.1016/S0010-4485(97)00085-7
|
|
|
[13] |
ZHONG Z, GUO X, WANG W, et al Particle-based anisotropic surface meshing[J]. ACM Transactions on Graphics, 2013, 32 (4): 1- 14
|
|
|
[14] |
SHIMADA K, GOSSARD D C Automatic triangular mesh generation of trimmed parametric surfaces for finite element analysis[J]. Computer Aided Geometric Design, 1998, 15 (3): 199- 222
doi: 10.1016/S0167-8396(97)00037-X
|
|
|
[15] |
PEYRÉ G, COHEN L. Surface segmentation using geodesic centroidal tessellation [C]// Proceedings of 2nd International Symposium on 3D Data Processing, Visualization and Transmission . Thessaloniki: IEEE, 2004: 995-1002.
|
|
|
[16] |
VALETTE S, CHASSERY J M, PROST R Generic remeshing of 3D triangular meshes with metric-dependent discrete Voronoi diagrams[J]. IEEE Transactions on Visualization and Computer Graphics, 2008, 14 (2): 369- 381
doi: 10.1109/TVCG.2007.70430
|
|
|
[17] |
YAN D M, LÉVY B, LIU Y, et al Isotropic remeshing with fast and exact computation of restricted Voronoi diagram[J]. Computer Graphics Forum, 2009, 28 (5): 1445- 1454
doi: 10.1111/j.1467-8659.2009.01521.x
|
|
|
[18] |
DU Q, WANG D Anisotropic centroidal Voronoi tessellations and their applications[J]. SIAM Journal on Scientific Computing, 2005, 26 (3): 737- 761
doi: 10.1137/S1064827503428527
|
|
|
[19] |
LABELLE F, SHEWCHUK J R. Anisotropic Voronoi diagrams and guaranteed-quality anisotropic mesh generation [C]// Proceedings of the 19th Annual Symposium on Computational Geometry . New York: ACM, 2003: 191- 200.
|
|
|
[20] |
SHENG X, HIRSCH B E Triangulation of trimmed surfaces in parametric space[J]. Computer-Aided Design, 1992, 24 (8): 437- 444
doi: 10.1016/0010-4485(92)90011-X
|
|
|
[21] |
GU X, YAU S T. Global conformal surface parameterization [C]// Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing . Goslar: ACM, 2003: 127-137.
|
|
|
[22] |
LIU L, YE C, NI R, et al Progressive parameterizations[J]. ACM Transactions on Graphics, 2018, 37 (4): 1- 12
|
|
|
[23] |
SU K, LEI N, CHEN W, et al Curvature adaptive surface remeshing by sampling normal cycle[J]. Computer-Aided Design, 2019, 111: 1- 12
doi: 10.1016/j.cad.2019.01.004
|
|
|
[24] |
BÉCHET E, CUILLIERE J C, TROCHU F Generation of a finite element MESH from stereolithography (STL) files[J]. Computer-Aided Design, 2002, 34 (1): 1- 17
doi: 10.1016/S0010-4485(00)00146-9
|
|
|
[25] |
AUBRY R, KARAMETE B K, MESTREAU E L, et al A three-dimensional parametric mesher with surface boundary-layer capability[J]. Journal of Computational Physics, 2014, 270: 161- 181
doi: 10.1016/j.jcp.2014.03.057
|
|
|
[26] |
GUO J, DING F, JIA X, et al Automatic and high-quality surface mesh generation for CAD models[J]. Computer-Aided Design, 2019, 109: 49- 59
doi: 10.1016/j.cad.2018.12.005
|
|
|
[27] |
尤磊, 申则宇, 张立强, 等 CAD 模型三角网格优化算 法[J]. 计算机辅助设计与图形学学报, 2019, 31 (6): 878- 885 YOU Lei, SHEN Zeyu, ZHANG Liqiang, et al A mesh optimization algorithm for CAD models[J]. Journal of Computer-Aided Design and Computer Graphics, 2019, 31 (6): 878- 885
doi: 10.3724/SP.J.1089.2019.17393
|
|
|
[28] |
SHEWCHUK J R. What is a good linear element? interpolation, conditioning, and quality measures [C]// Proceedings of the International Meshing Roundtable . Ithaca: SIAM, 2002: 115-126.
|
|
|
[29] |
FREY P J, BOROUCHAKI H Geometric surface mesh optimization[J]. Computing and Visualization in Science, 1998, 1 (3): 113- 121
doi: 10.1007/s007910050011
|
|
|
[30] |
BOTSCH M, BOMMES D, VOGEL C, et al. GPU-based tolerance volumes for mesh processing [C]// Proceedings of the Pacific Conference on Computer Graphics and Applications . Goslar: IEEE, 2004: 237-243.
|
|
|
[31] |
MANDAD M, COHEN-STEINER D, ALLIEZ P Isotopic approximation within a tolerance volume[J]. ACM Transactions on Graphics, 2015, 34 (4): 1- 12
|
|
|
[32] |
WANG B, SCHNEIDER T, HU Y, et al Exact and efficient polyhedral envelope containment check[J]. ACM Transactions on Graphics, 2020, 39 (4): 114
|
|
|
[33] |
HU K, YAN D M, BOMMES D, et al Error-bounded and feature preserving surface remeshing with minimal angle improvement[J]. IEEE Transactions on Visualization and Computer Graphics, 2016, 23 (12): 2560- 2573
|
|
|
[34] |
YANG Y, ZHANG W X, LIU Y, et al Error-bounded compatible remeshing[J]. ACM Transactions on Graphics, 2020, 39 (4): 1- 15
|
|
|
[35] |
ZHANG W X, WANG Q, GUO J P, et al Constrained remeshing using evolutionary vertex optimization[J]. Computer Graphics Forum, 2022, 41 (2): 237- 247
doi: 10.1111/cgf.14471
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|