Please wait a minute...
J4  2012, Vol. 46 Issue (2): 274-279    DOI: 10.3785/j.issn.1008-973X.2012.02.015
    
Automatic hexahedral mesh generation for many-to-one sweep volumes
CHEN Jian-jun1, XIAO Zhou-fang1, Cao Jian1, ZHU Chao-yan1,2, ZHENG Yao1
1. Center for Engineering and Scientific Computations, School of Aeronautics and Astronautics, Zhejiang University,
Hangzhou 310027, China; 2. Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

By means of virtual decomposition, a sweep volume with many sources and one target (many-to-one sweep volume) is automatically decomposed into several sub-volumes with only one source and one target (one-to-one sweep volume). Some artificial interfaces, called virtual surfaces, are automatically generated in the virtual decomposition process to seperate the neighboring sub-volumes. All the virtual surfaces are meshed by the projection method once before meshing the sub-volumes in order to maintain the conformity of the neighboring sub-volume meshes. For sub-volume mesh generation, how to locate interior nodes is the key, which is resolved by the affine mapping method. A new computing technique for the mapping function is proposed in this paper in order to overcome two drawbacks of the previous ones. One is that the mapping function is not unique when the boundary nodes of the source are coplanar. The other is that the interior elements may twist when the volume is composed of the curved source, target and sweeping path. It is demonstrated that the new location algorithm performs better than the other prevailing algorithms in terms of mesh quality and time efficiency. Finally, a comparison between the proposed hexahedral mesher and one commercial one is presented to verify the usability of the former.



Published: 20 March 2012
CLC:  O 242.21  
Cite this article:

CHEN Jian-jun, XIAO Zhou-fang, Cao Jian, ZHU Chao-yan, ZHENG Yao. Automatic hexahedral mesh generation for many-to-one sweep volumes. J4, 2012, 46(2): 274-279.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2012.02.015     OR     http://www.zjujournals.com/eng/Y2012/V46/I2/274


多源扫掠体全六面体网格自动生成算法

引入虚面概念和虚拟分解算法,将多源面单目标面扫掠体(简称多源扫掠体)自动分解为多个单源面单目标面扫掠体(简称单源扫掠体).针对每个单源扫掠体,先生成虚面网格,然后生成包含虚面的单源扫掠体网格,以保证共享虚面上的网格一致性.单源扫掠体网格生成的关键是内点定位,通过改进仿射变换求解算法,解决了已有算法的2个缺陷,一是源面边界点共面时仿射函数不唯一,二是源面、目标面和扫掠路径弯曲时内部单元可能会扭曲.数值试验表明,新的内点定位算法在网格质量和执行效率上都要优于已有算法.与某商业软件扫掠网格生成结果的对比也验证了本文算法的实用性.

[1] BENZLEY S E, PERRY E, MERKLEY K, et al. A comparison of allhexahedral and alltetrahedral finite element meshes for elastic and elastoplastic analysis [C]∥ Proceedings of the 4th International Meshing Roundtable. Albuquerque, NM: Sandia National Laboratory, 1995: 179-191.
[2] 关振群, 宋超, 顾元宪, 等. 有限元网格生成方法研究的新进展[J]. 计算机辅助设计与图形学报, 2003, 15(1): 1-14.
GUAN Zhenqun, SONG Chao, GU Yuanxian, et al. Recent advances of research on finite element mesh generation methods [J]. Journal of ComputerAided Design & Computer Graphics, 2003, 15(1): 1-14.
[3] ROCA X, SARRATE J, HUERTA A. Surface mesh projection for hexahedral mesh generation by sweeping [C]∥ Proceedings of the 13th International Meshing Roundtable. Williamsburg VA: Sandia National Laboratory, 2004: 169-180.
[4] RYPL D. Sweeping of unstructured meshes over generalized extruded volumes [J]. Finite Elements Analysis and Design, 2010, 46(1): 203-215.
[5] 毕运波, 柯映林, 董辉跃. 扫掠体六面体网格生成算法研究[J]. 浙江大学学报:工学版, 2007, 41(5): 727-731.
BI Yunbo, KE Yinglin, DONG Huiyue. Hexahedral mesh generation algorithm of swept volume [J]. Journal of Zhejiang University :Engineering Science, 2007, 41(5): 727-731.
[6] SCOTT M A, BENZLEY S E, OWEN S J. Improved many-to-one sweeping [J]. International Journal for Numerical Methods in Engineering, 2006, 65(3): 332-348.

[7] LAI M W, BENZLEY S E, WHITE D R. Automated hexahedral mesh generation by generalized multiple source to multiple target sweeping [J]. International Journal for Numerical Methods in Engineering, 2000, 49(1): 261-275.
[8] WHITE D R, SAIGAL S, OWEN S J. CCSweep: an automatic decomposition of multisweep volumes [J]. Engineering with Computers, 2004, 20(3): 222-236.
[9] KNUPP P M. Nextgeneration sweep tool: a method for generating allhex meshes on twoandonehalf dimensional geometries [C]∥ Proceedings of the 7th International Meshing Roundtable. Dearborn, MI: Sandia National Laboratory, 1998: 505-513.
[10] ROCA X, SARRATE J. A new leastsquares approximation of affine mappings for sweep algorithms [J]. Engineering with Computers, 2010, 26(3): 327-337.
[11] ROCA X, SARRATE J. An automatic and general leastsquares projection procedure for sweep meshing [J]. Engineering with Computers, 2010, 26 (4): 391-406.
[12] WHITE D R, TAUTGES T, TIMOTHY J. Automatic scheme selection for toolkit hex meshing [J]. International Journal for Numerical Methods in Engineering, 2000, 49(1): 127-144.
[13] MITCHELL S. A High fidelity interval assignment [C]∥ Proceedings of the 6th International Meshing Roundtable. Park City, UT: Sandia National Laboratory, 1997: 33-44.
[14] COOK W A, OAKES W R. Mapped methods for generating three dimensional meshes [J]. Computers in Mechanical Engineering, 1982, 1(1): 67-72.
[15] RUIZGIRONS E, SARRATE J. Generation of structured meshes in multiply connected surfaces using submapping [J]. Advances in Engineering Software, 2010, 41(2): 379-387.
[16] 陈维新. 线性代数[M]. 北京: 科学出版社, 2002.
[17] BLACKER T. The cooper tool [C]∥ Proceedings of the 5th International Meshing Roundtable. Pittsburgh, PA: Sandia National Laboratory, 1996: 13-29.
[18] KNUPP P. Algebraic mesh quality metrics for unstructured initial meshes [J]. Finite Elements in Analysis and Design, 2003, 39(3): 217-241.

No related articles found!