|
|
Representation of combustion thermochemical manifolds via multi-gate mixture of experts |
Yi-cun WANG1(),Chang-xiao SHAO2,Tai JIN3,Jiang-kuan XING1,Kun LUO1,4,*(),Jian-ren FAN1,4 |
1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China 2. Center for Turbulence Control, Harbin Institute of Technology, Shenzhen Campus, Shenzhen 518055, China 3. School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China 4. Shanghai Institute for Advanced Study of Zhejiang University, Shanghai 200120, China |
|
|
Abstract The multi-gate mixture of experts (MMoE) for multi-task learning was applied to better implement the representation of combustion thermochemical manifolds in the framework of flamelet-based combustion models. Detailed chemistry (DC) simulation of a three-dimensional laminar spray jet flame was conducted to generate the original dataset. The original dataset was preprocessed by Box-Cox transformation and Z-score normalization to deal with the multi-scale distributions of combustion data. Correlation analysis was performed on the dataset using the Pearson correlation coefficient, and the results showed that there was no significant correlation between some chemical species. The MMoE and feedforward neural network (FNN) models were constructed respectively, and the comparison and analysis showed that although both models achieved similar loss values and coefficients of determination, the MMoE model was more stable during the training process and achieved more accurate quantitative prediction results than FNN model.
|
Received: 15 April 2023
Published: 27 December 2023
|
|
Fund: 国家杰出青年科学基金资助项目(51925603);国家自然科学基金资助项目(52236002) |
Corresponding Authors:
Kun LUO
E-mail: wangyicun@zju.edu.cn;zjulk@zju.edu.cn
|
基于多门控混合专家网络的燃烧热化学流形表征
为了更好地在小火焰燃烧模型框架内实施燃烧热化学流形表征,采用多任务学习领域中的多门控混合专家网络(MMoE). 通过对三维层流喷雾射流火焰构型进行详细化学(DC)模拟,构建原始数据集. 原始数据集经过Box-Cox转换和标准化处理,以应对燃烧数据的多尺度分布问题. 对数据集进行Pearson相关系数分析,结果表明部分化学组分之间无明显的相关性. 分别构建同等参数量规模的MMoE和前馈神经网络(FNN)模型,对比分析结果表明,2种模型取得的损失值和决定系数相近,但相比FNN模型,MMoE模型在训练过程中更加稳定,且取得的定量预测结果更加准确.
关键词:
多门控混合专家网络 (MMoE),
前馈神经网络(FNN),
小火焰模型,
层流喷雾火焰,
燃烧数值模拟
|
|
[1] |
KARNIADAKIS G E, KEVREKIDIS I G, LU L, et al Physics-informed machine learning[J]. Nature Reviews Physics, 2021, 3 (6): 422- 440
doi: 10.1038/s42254-021-00314-5
|
|
|
[2] |
ZHOU L, SONG Y, JI W, et al Machine learning for combustion[J]. Energy and AI, 2022, 7: 100128
doi: 10.1016/j.egyai.2021.100128
|
|
|
[3] |
IHME M, CHUNG W T, MISHRA A A Combustion machine learning: principles, progress and prospects[J]. Progress in Energy and Combustion Science, 2022, 91: 101010
doi: 10.1016/j.pecs.2022.101010
|
|
|
[4] |
ZHU L T, CHEN X Z, BO O, et al Review of machine learning for hydrodynamics, transport, and reactions in multiphase flows and reactors[J]. Industrial and Engineering Chemistry Research, 2022, 61 (28): 9901- 9949
doi: 10.1021/acs.iecr.2c01036
|
|
|
[5] |
POPE S B Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation[J]. Combustion Theory and Modelling, 1997, 1 (1): 41- 63
doi: 10.1080/713665229
|
|
|
[6] |
TONSE S R, MORIARTY N W, BROWN N J, et al PRISM: piecewise reusable implementation of solution mapping. An economical strategy for chemical kinetics[J]. Israel Journal of Chemistry, 1999, 39 (1): 97- 106
doi: 10.1002/ijch.199900010
|
|
|
[7] |
IHME M, SEE Y C Prediction of autoignition in a lifted methane/air flame using an unsteady flamelet/progress variable model[J]. Combustion and Flame, 2010, 157 (10): 1850- 1862
doi: 10.1016/j.combustflame.2010.07.015
|
|
|
[8] |
ZHANG Y, XU S, ZHONG S, et al Large eddy simulation of spray combustion using flamelet generated manifolds combined with artificial neural networks[J]. Energy and AI, 2020, 2: 100021
doi: 10.1016/j.egyai.2020.100021
|
|
|
[9] |
KEMPF A, FLEMMING F, JANICKA J Investigation of lengthscales, scalar dissipation, and flame orientation in a piloted diffusion flame by LES[J]. Proceedings of the Combustion Institute, 2005, 30: 557- 565
doi: 10.1016/j.proci.2004.08.182
|
|
|
[10] |
CHATZOPOULOS A K, RIGOPOULOS S A chemistry tabulation approach via rate-controlled constrained equilibrium (RCCE) and artificial neural networks (ANNs), with application to turbulent non-premixed CH4/H2/N2 flames [J]. Proceedings of the Combustion Institute, 2013, 34: 1465- 1473
doi: 10.1016/j.proci.2012.06.057
|
|
|
[11] |
ZHANG T, YI Y, XU Y, et al A multi-scale sampling method for accurate and robust deep neural network to predict combustion chemical kinetics[J]. Combustion and Flame, 2022, 245: 112319
doi: 10.1016/j.combustflame.2022.112319
|
|
|
[12] |
AN J, HE G, LUO K, et al Artificial neural network based chemical mechanisms for computationally efficient modeling of hydrogen/carbon monoxide/kerosene combustion[J]. International Journal of Hydrogen Energy, 2020, 45 (53): 29594- 29605
doi: 10.1016/j.ijhydene.2020.08.081
|
|
|
[13] |
DING T, READSHAW T, RIGOPOULOS S, et al Machine learning tabulation of thermochemistry in turbulent combustion: an approach based on hybrid flamelet/random data and multiple multilayer perceptrons[J]. Combustion and Flame, 2021, 231: 111493
doi: 10.1016/j.combustflame.2021.111493
|
|
|
[14] |
CHI C, JANIGA G, THÉVENIN D On-the-fly artificial neural network for chemical kinetics in direct numerical simulations of premixed combustion[J]. Combustion and Flame, 2021, 226: 467- 477
doi: 10.1016/j.combustflame.2020.12.038
|
|
|
[15] |
FRANKE L L C, CHATZOPOULOS A K, RIGOPOULOS S Tabulation of combustion chemistry via artificial neural networks (ANNs): methodology and application to LES-PDF simulation of Sydney flame L[J]. Combustion and Flame, 2017, 185: 245- 260
doi: 10.1016/j.combustflame.2017.07.014
|
|
|
[16] |
CHI C, XU X, THÉVENIN D Efficient premixed turbulent combustion simulations using flamelet manifold neural networks: a priori and a posteriori assessment[J]. Combustion and Flame, 2022, 245: 112325
doi: 10.1016/j.combustflame.2022.112325
|
|
|
[17] |
IHME M, SCHMITT C, PITSCH H Optimal artificial neural networks and tabulation methods for chemistry representation in LES of a bluff-body swirl-stabilized flame[J]. Proceedings of the Combustion Institute, 2009, 32: 1527- 1535
doi: 10.1016/j.proci.2008.06.100
|
|
|
[18] |
EMAMI M D, FARD A E Laminar flamelet modeling of a turbulent CH4/H2/N2 jet diffusion flame using artificial neural networks [J]. Applied Mathematical Modelling, 2012, 36 (5): 2082- 2093
doi: 10.1016/j.apm.2011.08.012
|
|
|
[19] |
HANSINGER M, GE Y, PFITZNER M Deep residual networks for flamelet/progress variable tabulation with application to a piloted flame with inhomogeneous inlet[J]. Combustion Science and Technology, 2022, 194 (8): 1587- 1613
doi: 10.1080/00102202.2020.1822826
|
|
|
[20] |
SHADRAM Z, NGUYEN T M, SIDERIS A, et al. Neural network closure models for estimating flame variables in a liquid-propellant rocket engine [C]// AIAA Scitech 2019 Forum. San Diego: [s.n.], 2019: 2008.
|
|
|
[21] |
OWOYELE O, KUNDU P, AMEEN M M, et al Application of deep artificial neural networks to multi-dimensional flamelet libraries and spray flames[J]. International Journal of Engine Research, 2020, 21 (1): 151- 168
doi: 10.1177/1468087419837770
|
|
|
[22] |
DEMIR S, KUNDU P, NUNNO A C, et al. Deep neural network based unsteady flamelet progress variable approach in a supersonic combustor [C]// AIAA SCITECH 2022 Forum. San Diego: [s.n.], 2022: 2073.
|
|
|
[23] |
KASUYA H, IWAI Y, ITOH M, et al LES/flamelet/ANN of oxy-fuel combustion for a supercritical CO2 power cycle [J]. Applications in Energy and Combustion Science, 2022, 12: 100083
doi: 10.1016/j.jaecs.2022.100083
|
|
|
[24] |
OWOYELE O, KUNDU P, PAL P Efficient bifurcation and tabulation of multi-dimensional combustion manifolds using deep mixture of experts: an a priori study[J]. Proceedings of the Combustion Institute, 2021, 38 (4): 5889- 5896
doi: 10.1016/j.proci.2020.09.006
|
|
|
[25] |
JACOBS R A, JORDAN M I, BARTO A G Task decomposition through competition in a modular connectionist architecture: the what and where vision tasks[J]. Cognitive Science, 1991, 15 (2): 219- 250
doi: 10.1207/s15516709cog1502_2
|
|
|
[26] |
MA J, ZHAO Z, YI X, et al. Modeling task relationships in multi-task learning with multi-gate mixture-of-experts: KDD'18 [C]// Proceeding of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. [S.l.]: ACM, 2018: 1930-1939.
|
|
|
[27] |
ZHANG Y, WANG H, BOTH A, et al Effects of turbulence-chemistry interactions on auto-ignition and flame structure for n-dodecane spray combustion[J]. Combustion Theory and Modelling, 2019, 23 (5): 907- 934
doi: 10.1080/13647830.2019.1600722
|
|
|
[28] |
HUANG Z, ZHAO M, XU Y, et al Eulerian-lagrangian modelling of detonative combustion in two-phase gas-droplet mixtures with OpenFOAM: validations and verifications[J]. Fuel, 2021, 286: 119402
doi: 10.1016/j.fuel.2020.119402
|
|
|
[29] |
CROWE C T, SHARMA M P, STOCK D E The particle-source-in cell (PSI-CELL) model for gas-droplet flows[J]. Journal of Fluids Engineering, 1977, 99 (1): 325- 332
|
|
|
[30] |
JENNY P, ROEKAERTS D, BEISHUIZEN N Modeling of turbulent dilute spray combustion[J]. Progress in Energy and Combustion Science, 2012, 38 (6): 846- 887
doi: 10.1016/j.pecs.2012.07.001
|
|
|
[31] |
WANG Y, CAI R, SHAO C, et al A priori and a posteriori studies of a novel spray flamelet tabulation methodology considering evaporation effects[J]. Fuel, 2023, 331: 125892
doi: 10.1016/j.fuel.2022.125892
|
|
|
[32] |
WANG Y C, SHAO C, LUO K, et al LES of a turbulent lifted methanol spray flame using a novel spray flamelet/progress variable model[J]. Energy, 2023, 284: 128608
|
|
|
[33] |
WANG Y, SHAO C, JIN T, et al Large eddy simulation of spray combustion using the spray flamelet/progress variable model: further extension and validation[J]. Physics of Fluids, 2023, 35 (10): 105156
|
|
|
[34] |
MAIONCHI D O, SANTOS F P, MELGUIZO-GAVILANES J, et al A generalised spray-flamelet formulation by means of a monotonic variable[J]. Combustion Theory and Modelling, 2021, 25 (2): 293- 314
doi: 10.1080/13647830.2020.1866215
|
|
|
[35] |
WATANABE H, KUROSE R, HWANG S M, et al Characteristics of flamelets in spray flames formed in a laminar counterflow[J]. Combustion and Flame, 2007, 148 (4): 234- 248
doi: 10.1016/j.combustflame.2006.09.006
|
|
|
[36] |
FRANZELLI B, VIÉ A, IHME M On the generalisation of the mixture fraction to a monotonic mixing-describing variable for the flamelet formulation of spray flames[J]. Combustion Theory and Modelling, 2015, 19 (6): 773- 806
doi: 10.1080/13647830.2015.1099740
|
|
|
[37] |
O'LOUGHLIN W, MASRI A R The structure of the auto-ignition region of turbulent dilute methanol sprays issuing in a vitiated co-flow[J]. Flow Turbulence and Combustion, 2012, 89 (1): 13- 35
doi: 10.1007/s10494-012-9388-x
|
|
|
[38] |
PRASAD V N, MASRI A R, NAVARRO-MARTINEZ S, et al Investigation of auto-ignition in turbulent methanol spray flames using large eddy simulation[J]. Combustion and Flame, 2013, 160 (12): 2941- 2954
doi: 10.1016/j.combustflame.2013.07.004
|
|
|
[39] |
PICHLER C, NILSSON E J K Reduced kinetic mechanism for methanol combustion in spark-ignition engines[J]. Energy and Fuels, 2018, 32 (12): 12805- 12813
doi: 10.1021/acs.energyfuels.8b02136
|
|
|
[40] |
BOX G E P, COX D R An analysis of transformations[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1964, 26 (2): 211- 243
doi: 10.1111/j.2517-6161.1964.tb00553.x
|
|
|
[41] |
GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks [C]// Proceedings of the 13th International Conference on Artificial Intelligence and Statistics. Sardinia: [s.n.], 2010: 249–256.
|
|
|
[42] |
KINGMA D P, BA J L. Adam: a method for stochastic optimization [EB/OL]. (2017-01-30)[2023-03-01]. https://arxiv.org/pdf/1412.6980.pdf.
|
|
|
[43] |
BHATIA B, DE A, ROEKAERTS D, et al Numerical analysis of dilute methanol spray flames in vitiated coflow using extended flamelet generated manifold model[J]. Physics of Fluids, 2022, 34 (7): 075111
doi: 10.1063/5.0098705
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|