Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (7): 1418-1427    DOI: 10.3785/j.issn.1008-973X.2023.07.017
    
Representative elementary volume of mechanical parameter of rockfill material with laboratory scaled gradation
Jin-wei WANG1,2(),Shi-chun CHI1,2,*(),Shi-hao YAN1,2,Yu GUO1,2,Xin-jie ZHOU1,2
1. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China
2. School of Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China
Download: HTML     PDF(2867KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The discrete element method (DEM) was used to analyze the effect of specimen size on the mechanical behavior of basalt rockfill materials in order to find the representative elementary volume (REV) of the strength and deformation parameters of the rockfill materials with laboratory scaled gradation. Laboratory single-particle crushing tests were conducted to analyze the crushing characteristics of basalt particles and determine the particle crushing strength parameters required for DEM simulations. A series of triaxial compression DEM tests with different specimen sizes, particle arrangements and confining pressures were conducted. The variations of strength and deformation parameters with specimen size were analyzed for rockfill materials, and the REV of each parameter was assessed. Results show that particle arrangement and specimen size both impact the mechanical behavior of basalt rockfill materials. The variation coefficient of each mechanical parameter decreases as specimen size increases. The REV size of different mechanical parameters is different. The appropriate specimen size can be selected according to the research object in order to improve the calculation efficiency of DEM. The size of the numerical sample should not be less than 300 mm in diameter and 600 mm in height in order to make all parameters stable under the simulated conditions.



Key wordsrockfill material      representative elementary volume      discrete element method (DEM)      specimen size effect      particle breakage     
Received: 02 August 2022      Published: 17 July 2023
CLC:  TV 41  
Fund:  国家重点研发计划资助项目(2016YFB0201001)
Corresponding Authors: Shi-chun CHI     E-mail: wangjwxkl@163.com;schchi@dlut.edu.cn
Cite this article:

Jin-wei WANG,Shi-chun CHI,Shi-hao YAN,Yu GUO,Xin-jie ZHOU. Representative elementary volume of mechanical parameter of rockfill material with laboratory scaled gradation. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1418-1427.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.07.017     OR     https://www.zjujournals.com/eng/Y2023/V57/I7/1418


室内缩尺级配堆石料力学参数的表征单元体积

为了寻找室内缩尺级配堆石料强度和变形参数的表征单元体积(REV),利用离散元方法(DEM)研究试样尺寸对玄武岩堆石料力学行为的影响. 通过室内单颗粒破碎试验,分析玄武岩颗粒的破碎特性,确定DEM模拟所需的颗粒破碎强度参数. 开展一系列试样尺寸、颗粒排列和围压不同的三轴压缩DEM试验. 分析堆石料强度和变形参数随试样尺寸的变化规律,建议了各参数的REV. 结果表明,颗粒排列和试样尺寸均会影响堆石料的力学行为. 各力学参数的变异系数随着试样尺寸的增大而减小. 不同力学参数的REV尺寸不同,为了提高DEM计算效率,可以根据研究对象选择合适的试样尺寸. 在模拟工况下,要使所有参数均达到稳定,数值试样尺寸应不小于直径300 mm×高度600 mm.


关键词: 堆石料,  表征单元体积,  离散元方法(DEM),  试样尺寸效应,  颗粒破碎 
Fig.1 Particle crushing apparatus and particles before and after crushing
Fig.2 Relation between strength and survival probability for basalt particles
d/mm davg/mm m σ0/MPa
15~20 17.5 2.810 20.089
20~24 22 2.835 18.431
24~28 26 2.722 16.173
28~32 30 2.190 15.988
32~36 34 2.384 14.899
36~40 38 2.305 14.061
Tab.1 Weibull fitting parameters
Fig.3 Characteristic strength as function of particle size for basalt particles
Fig.4 Replacement mechanism for particle crushing[28]
Fig.5 Particle grading curves
Fig.6 Stress-strain curves for different fracture limit sizes
Fig.7 Comparison between DEM results and laboratory tests of basalt rockfill materials
参数 参数值 参数 参数值
ρ/(kg·m?3) 2790 E*/MPa 508.21
e0 0.51 kr 1.15
mavg 2.541 μr 0.92
a/MPa 24.52 μ 0.51
b 0.062 dlimit/mm 5.0
c/MPa 11.81
Tab.2 DEM parameters
Fig.8 Schematic diagram of numerical specimens with different sizes and particle arrangements
Fig.9 Stress-strain curves for specimens of different sizes and particle arrangements at confining pressure of 2 000 kPa
Fig.10 Stress-strain-volume relation of rockfill materials in conventional triaxial test
Fig.11 Evolution of peak strength and its coefficient of variation with specimen size
Fig.12 Statistical results of φ0$\Delta \varphi $
Fig.13 Evolution of secant modulus and its coefficient of variation with specimen size
Fig.14 Evolution of Poisson ratio and its coefficient of variation with specimen size
Fig.15 Evolution of maximum volumetric compressive strain and its coefficient of variation with specimen size
[1]   周伟, 马刚, 刘嘉英, 等 高堆石坝筑坝材料宏细观变形分析研究进展[J]. 中国科学: 技术科学, 2018, 48 (10): 1068- 1080
ZHOU Wei, MA Gang, LIU Jia-ying, et al Review of macro- and mesoscopic analysis on rockfill materials in high dams[J]. Scientia Sinica Technologica, 2018, 48 (10): 1068- 1080
doi: 10.1360/N092018-00279
[2]   宁凡伟, 孔宪京, 邹德高, 等 筑坝材料缩尺效应及其对阿尔塔什面板坝变形及应力计算的影响[J]. 岩土工程学报, 2021, 43 (2): 263- 270
NING Fan-wei, KONG Xian-jing, ZOU De-gao, et al Scale effect of rockfill materials and its influences on deformation and stress analysis of Aertashi CFRD[J]. Chinese Journal of Geotechnical Engineering, 2021, 43 (2): 263- 270
[3]   孔宪京, 刘京茂, 邹德高 堆石料尺寸效应研究面临的问题及多尺度三轴试验平台[J]. 岩土工程学报, 2016, 38 (11): 1941- 1947
KONG Xian-jing, LIU Jing-mao, ZOU De-gao Scale effect of rockfill and multiple-scale triaxial test platform[J]. Chinese Journal of Geotechnical Engineering, 2016, 38 (11): 1941- 1947
doi: 10.11779/CJGE201611002
[4]   徐琨, 周伟, 马刚 颗粒破碎对堆石料填充特性缩尺效应的影响研究[J]. 岩土工程学报, 2020, 42 (6): 1013- 1022
XU Kun, ZHOU Wei, MA Gang Influence of particle breakage on scale effect of filling characteristics of rockfill material[J]. Chinese Journal of Geotechnical Engineering, 2020, 42 (6): 1013- 1022
[5]   王晋伟, 迟世春, 邵晓泉, 等 正交–等值线法在堆石料细观参数标定中的应用[J]. 岩土工程学报, 2020, 42 (10): 1867- 1875
WANG Jin-wei, CHI Shi-chun, SHAO Xiao-quan, et al Application of orthogonal-contour method in calibration of microscopic parameters of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42 (10): 1867- 1875
[6]   BEAR J. Dynamics of fluids in porous media [M]. New York: American Elsevier, 1972.
[7]   刘海涛, 程晓辉 粗粒土尺寸效应的离散元分析[J]. 岩土力学, 2009, 30 (Supple.1): 287- 292
LIU Hai-tao, CHENG Xiao-hui Discrete element analysis for size effects of coarse-grained soils[J]. Rock and Soil Mechanics, 2009, 30 (Supple.1): 287- 292
doi: 10.3969/j.issn.1000-7598.2009.z1.057
[8]   WIACEK J, MOLENDA M Representative elementary volume analysis of polydisperse granular packings using discrete element method[J]. Particuology, 2016, 27 (1): 88- 94
[9]   RAZAVI M R, MUHUNTHAN B, AL HATTAMLEH O Representative elementary volume analysis of sands using X-ray computed tomography[J]. Geotechnical Testing Journal, 2006, 30 (3): 212- 219
[10]   XIAO Y, LIU H L, CHEN Y M, et al Strength and deformation of rockfill material based on large-scale triaxial compression tests. II: influence of particle breakage[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140 (12): 04014071
doi: 10.1061/(ASCE)GT.1943-5606.0001177
[11]   贾宇峰, 王丙申, 迟世春 堆石料剪切过程中的颗粒破碎研究[J]. 岩土工程学报, 2015, 37 (9): 1692- 1697
JIA Yu-feng, WANG Bing-shen, CHI Shi-chun Particle breakage of rockfill during triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37 (9): 1692- 1697
doi: 10.11779/CJGE201509018
[12]   HOLTZ W G, GIBBS H J Triaxial shear tests on pervious gravelly soils[J]. Journal of the Soil Mechanics and Foundations Division, 1956, 82 (1): 1- 22
[13]   LEPS T M Review of shearing strength of rockfill[J]. Journal of the Soil Mechanics and Foundations Division, 1970, 96 (SM4): 1159- 1170
[14]   司洪洋 大型三轴试验的选型问题[J]. 勘察科学技术, 1988, (1): 12- 16
SI Hong-yang Scale selection of large triaxial tests[J]. Site Investigation Science and Technology, 1988, (1): 12- 16
[15]   DAS NEVES E M. Advances in rockfill structures [M]. Berlin: Springer, 1991.
[16]   郭庆国. 粗粒土的工程特性及应用[M]. 郑州: 黄河水利出版社, 1999.
[17]   土工试验方法标准: GB/T 50123—2019 [S]. 北京: 中华人民共和国水利部, 2019.
[18]   Standard test method for consolidated drained triaxial compression test for soils: ASTM D7181-2020[S]. West Conshohocken: PA, 2020.
[19]   HU W, DANO C, HICHER P Y, et al Effect of sample size on the behavior of granular materials[J]. Geotechnical Testing Journal, 2011, 34 (3): 186- 197
[20]   朱俊高, 刘忠, 翁厚洋, 等 试样尺寸对粗粒土强度及变形试验影响研究[J]. 四川大学学报: 工程科学版, 2012, 44 (6): 92- 96
ZHU Jun-gao, LIU Zhong, WENG Hou-yang, et al Study on effect of specimen size upon strength and deformation behavior of coarse-grained soil in triaxial test[J]. Journal of Sichuan University: Engineering Science Edition, 2012, 44 (6): 92- 96
[21]   OMAR T, SADREKARIMI A Specimen size effects on behavior of loose sand in triaxial compression tests[J]. Canadian Geotechnical Journal, 2015, 52 (6): 732- 746
doi: 10.1139/cgj-2014-0234
[22]   GU X, LU L, QIAN J Discrete element modeling of the effect of particle size distribution on the small strain stiffness of granular soils[J]. Particuology, 2016, 32 (1): 21- 29
[23]   汪小刚 高土石坝几个问题探讨[J]. 岩土工程学报, 2018, 40 (2): 203- 222
WANG Xiao-gang Discussion on some problems observed in high earth-rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2018, 40 (2): 203- 222
doi: 10.11779/CJGE201802001
[24]   OVALLE C, FROSSARD E, DANO C, et al The effect of size on the strength of coarse rock aggregates and large rockfill samples through experimental data[J]. Acta Mechanica, 2014, 225 (8): 2199- 2216
doi: 10.1007/s00707-014-1127-z
[25]   马刚, 王渊, 程家林, 等 遇水湿化对堆石体颗粒破碎和压缩特性的影响研究[J]. 岩土工程学报, 2021, 43 (9): 1640- 1648
MA Gang, WANG Yuan, CHENG Jia-lin, et al Influences of wetting on crushing and compression characteristics of rockfill particles[J]. Chinese Journal of Geotechnical Engineering, 2021, 43 (9): 1640- 1648
[26]   WANG J, CHI S, SHAO X, et al Determination of the mechanical parameters of the microstructure of rockfill materials in triaxial compression DEM simulation[J]. Computers and Geotechnics, 2021, 137: 104265
doi: 10.1016/j.compgeo.2021.104265
[27]   RUSSELL A R, WOOD D M, KIKUMOTO M Crushing of particles in idealised granular assemblies[J]. Journal of the Mechanics and Physics of Solids, 2009, 57 (8): 1293- 1313
doi: 10.1016/j.jmps.2009.04.009
[28]   CIANTIA M, ARROYO M, CALVETTI F, et al An approach to enhance efficiency of DEM modelling of soils with crushable grains[J]. Géotechnique, 2015, 65 (2): 91- 110
[29]   PFC3D (Particle flow code in three dimensions)[M]. Version 5.0. Minneapolis: Itasca Consulting Group Inc. , 2014.
[30]   朱晟, 邓石德, 宁志远, 等 基于分形理论的堆石料级配设计方法[J]. 岩土工程学报, 2017, 39 (6): 1151- 1155
ZHU Sheng, DENG Shi-de, NING Zhi-yuan, et al Gradation design method for rockfill materials based on fractal theory[J]. Chinese Journal of Geotechnical Engineering, 2017, 39 (6): 1151- 1155
doi: 10.11779/CJGE201706023
[31]   张宜, 周伟, 马刚, 等 细颗粒截断粒径对堆石体力学 特性影响的数值模拟[J]. 武汉大学学报: 工学版, 2017, 50 (3): 332- 339
ZHANG Yi, ZHOU Wei, MA Gang, et al Effect of minimum particle size on mechanical properties of rockhill materials by numerical simulation[J]. Engineering Journal of Wuhan University, 2017, 50 (3): 332- 339
[1] Yu-xuan XIAO,Gang MA,Xi LU,Wei ZHOU,Di WANG,Ze-kai MIAO. Breakage behaviour of rockfill particles in complicated constraint patterns[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1514-1522, 1559.
[2] Rui-huan CAI,Yong-zhi ZHAO. Effect of screw structure on granular mixing in a double-screw conical mixer[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2067-2075.
[3] Lei XU,Kun LUO,Yong-zhi ZHAO,Jian-ren FAN,Ke-fa CEN. Effect of particle size on liner wear in semi-autogenous mill[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2255-2263.
[4] DENG Xuan-xuan, MA Gang, ZHOU Wei, CHANG Xiao-lin. Effects of local constraints patterns on fragmentation of single grain[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(7): 1329-1337.
[5] LIU Jun-wei, ZHU Na, WANG Li-zhong, SHANG Wen-chang. Degenerate mechanism of sand-steel interface under cyclic loading[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(6): 1123-1130.